

Overview

- Quick intro. to Belle II
- Test of LFU at Belle II
 - ✓ Exclusive $R(D^{(*)})$
 - ✓ Inclusive $R(X_{\tau/\ell})$
- $lacktriangleright B^+ o K^+
 u \overline{
 u}$

Part II charm baryons

 $\bullet \ \Xi_c^0 \to \Xi^0 h^0 \ (h^0 = \pi^0, \eta, \eta')$

Part III Energy scan for bottomonia

- \bullet new results on $\Upsilon(10753)$
- Closing

Part I B decays

SuperKEKB

Belle II

- $\mathcal{B}(\Upsilon(4S) \to B\overline{B}) > 96\%$, with $p_B^{CM} \sim 0.35$ GeV/c
- nothing else but $B\overline{B}$ in the final state

: if we know (E, \vec{p}) of one B, the other B is also constrained

See Appendix, p.35-37.

"B-tagging"

unique to e^+e^- B-factory

Updated on 2024/04/04 06:07 JST

Belle (1999-2010) Luminosity

•
$$\int \mathcal{L}_{total} = 1039 \text{ fb}^{-1}$$

980 fb⁻¹ for Ξ_c^0

980 fb⁻¹ for
$$\Xi_c^0$$

$$\mathcal{L}_{\Upsilon(4S)} = 711 \text{ fb}^{-1}$$

Part I B decays

LFU test via R(D) vs. $R(D^*)$

For details of the Belle II $R(D^*)$ measurement, see Appendix, p.38-40.

Inclusive LFU test w/ $R(X_{\tau/\ell})$

- Why measure $R(X_{\tau/\ell})$?
 - different systematics from $R(D^{(*)})$
 - hence, a complementary test of LFU
- Procedure
 - use $au o \mathscr{C}
 u_{ au} \overline{
 u}_{\mathscr{C}}$ modes
 - \bullet select events with $B_{\rm tag}+\ell$, with remaining particles attributed to X
 - distinguish signal from background by using M_{miss}^2 and p_{ℓ}^B
 - background mostly from $b \to c \to \ell$; some continuum and fake leptons

$R(X_{\tau/\ell})$, event distributions

- for reliable template shapes for fitting
 - ullet make detailed adjustments to MC (FF's, B and D BF's)
 - corrections by comparing MC to data in control region: low q^2 , low $M_{\rm miss}^2$, high M_X
 - e.g. adjust M_X in p_{ℓ} > 1.4 GeV sideband; using these weights also improves modeling in $M_{\rm miss}^2$ and q^2

Main sources of systematic uncertainty:

•	MC stat	±5.7 %
•	Bkg shape	±5.5 %
•	M_X modeling	±7.1 %
•	$B \to X_c \ell \nu$ BFs	±7.7 %
•	$B \to X_c \ell \nu \text{ FFs}$	±7.9 %

Recent physics results from Belle II incl. $B^+ \to K^+ \nu \bar{\nu}$

Youngjoon Kwon (Yonsei U.)

Apr. 11, 2024 for DIS 2024 @ Grenoble, France

$R(X_{\tau/\ell})$ Results

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016 \pm 0.036$$

$$R(X_{\tau/e}) = 0.232 \pm 0.020 \pm 0.037$$

$$R(X_{\tau/\mu}) = 0.222 \pm 0.027 \pm 0.050$$

Consistent with SM: 0.223 ± 0.005

M. Freytsis et al. <u>PRD 92, 054018 (2015)</u>

M. Rahimi, K. K. Vos, <u>JHEP 2022</u>, 7 (2022)

Z. Ligeti et al. PRD 105, 073009 (2022)

$R(X_{\tau/\ell})$, compared with $R(D^{(*)})$

 \dagger = with expected SM contributions of $D_{(gap)}^{**}, X_u$ removed

- Search for $B^+ \to K^+ \nu \overline{\nu}$ at Belle II
- In the SM,
 - $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6} \, [4]$

[4] W. G. Parrott et al. <u>PRD 107, 014511 (2023)</u> incl. long-distance contribution from $B \to \tau \nu$)

- sensitive to new physics BSM, e.g.
 - leptoquarks,
 - axions,
 - DM particles, etc.

PRL 127, 181802 (2021)

$$\mathcal{B}(B^+ \to K^+ \nu \overline{\nu}) = (1.9^{+1.3+0.8}_{-1.3-0.7}) \times 10^{-5}$$

< 4.1 × 10⁻⁵ @ 90% CL

earch for $B^+ o K^+ \nu \bar{\nu}$

Two ways of tagging

Efficiency

 q_{rec}^2 : mass squared of the neutrino pair

Purity, Resolution

Features of HTA

- ullet uses full decay chain information of of $B_{
 m tag}$
- high high purity, very low efficiency
- uses BDT for signal extraction (BDT_h)

Features of ITA

- exploits inclusive properties of B_{tag}
- high efficiency, low purity
- BDTs in two stages (BDT₁ mostly for $q\bar{q}$; BDT₂ for final signal extraction)

Signal efficiency (ITA vs. HTA)

after multi-variate analysis for ROE with BDT

for BDT efficiency validation, see p. 42 in the Appendix

$$q^2 = M(\nu \bar{\nu})^2$$

Closure test (ITA)

- Pion ID instead of kaon ID
- Different q_{rec}^2 bin boundaries
- o Only on-resonance data used for fit
- Only normalization systematics included

Result:

$$\circ \mathscr{B}(B^+ \to \pi^+ K^0) = (2.5 \pm 0.5) \times 10^{-5}$$

Consistent with PDG:

$$\mathcal{B}(B^+ \to \pi^+ K^0) = (2.3 \pm 0.08) \times 10^{-5}$$

$$q_{\rm rec}^2 = s/4 + M_{\pi^+}^2 - \sqrt{s}E_{\pi^+}^*$$

Assume B is at rest in the $\Upsilon(4S)$ rest-frame (c=1)

$B^+ \to K^+ \nu \overline{\nu}$ result (ITA)

$B^+ \to K^+ \nu \overline{\nu}$ post-fit distributions (ITA)

$$\eta(BDT_2) > 0.98$$

$$q_{\text{rec}}^2 = s/4 + M_{K^+}^2 - \sqrt{s}E_{K^+}^*$$

$B^+ \rightarrow K^+ \nu \overline{\nu}$ (combined)

$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{HTA}} = (1.1^{+0.9+0.8}_{-0.8-0.5}) \times 10^{-5}$$
$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{ITA}} = (2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{comb}} = (2.3 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$$

$\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})$ global picture

Part II Charm baryon

Charm baryon decays $\Xi_c^0 \to \Xi^0 h^0$ $(h^0 = \pi^0, \eta, \eta')$

- Sensitive to (a) W-emission, and (b) W-exchange diagrams
 - difficulties for theoretical predictions

Theory predictions vary in wide ranges for both BF and α See Appendix, p.43

- lacktriangle measures BF and decay asymmetry parameter lpha
 - in a combined data set of Belle (980/fb) + Belle II (426/fb)

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

Charm baryon decays $\Xi_c^0 o \Xi^0 h^0$ $(h^0 = \pi^0, \eta, \iota)$

$\mathcal{B}(\Xi_c^0 \to \Xi^0 h^0)$ branching fractions

Belle II

Results	Belle	Belle II	Combined
$\overline{\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)/\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	$0.47 \pm 0.02 \pm 0.03$	$0.51 \pm 0.03 \pm 0.05$	$0.48 \pm 0.02 \pm 0.03$
$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta)/\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)$	$0.10 \pm 0.02 \pm 0.01$	$0.14 \pm 0.02 \pm 0.02$	$0.11 \pm 0.01 \pm 0.01$
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')/\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.12 \pm 0.03 \pm 0.01$	$0.06 \pm 0.03 \pm 0.01$	$0.08 \pm 0.02 \pm 0.01$

Belle II precision is comparable to Belle with ~1/2 luminosity

$$\mathcal{B}(\Xi_c^0 \to \Xi_0 \pi^0) = (6.9 \pm 0.3 \pm 0.5 \pm 1.5) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^0 \to \Xi_0 \eta) = (1.6 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^0 \to \Xi_0 \eta') = (1.2 \pm 0.3 \pm 0.1 \pm 0.3) \times 10^{-3}$$

consistent w/ Zhong et al. [JHEP (2023)] based on SU(3)_F-breaking model

$\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ decay asymmetry

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

$$\alpha(\Xi_c^0 \to \Xi^0 \pi^0) \alpha(\Xi^0 \to \Lambda \pi^0) = 0.32 \pm 0.05 \text{(stat)}$$

by simultaneous fits to Belle & Belle II data sets

using
$$\alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 0.009 \text{ (PDG)},$$

$$\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 \pm 0.23$$

consistent w/ Pole model, CA, and SU(3)_F approaches

Part III Energy Scan for Bottomoia

Energy scan for $\Upsilon(10753)$

- $\circ \Upsilon(10753)$
 - first observed by Belle, [JHEP 10 (2019) 220] with 5.2σ
 - in the energy dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$
 - 3 several competing interpretations
- Belle II result
 - arxiv:2401.12021
 - $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ with $\Upsilon(nS) \to \mu^+ \mu^-$
 - confirms Belle results of $\Upsilon(10753)$

	$\mathcal{R}^{\Upsilon(10753)}_{\sigma(1S/2S)}$	$\mathcal{R}^{\varUpsilon(10753)}_{\sigma(3S/2S)}$
Ratio	$0.46^{+0.15}_{-0.12}$	$0.10^{+0.05}_{-0.04}$

Youngjoon Kwon (Yonsei U.)

Energy scan for $\Upsilon(10753)$

dipion mass distribution

- similar to both phase-space model and $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ for $\pi^+\pi^-\Upsilon(1S)$
- but similar to $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ only for $\pi^+\pi^-\Upsilon(2S)$

$\Upsilon(10753) \rightarrow \chi_{bJ}\omega$

- cross section shows a peak at $\Upsilon(10753)$, hence a confirmation and a new decay channel
- the ratio $\chi_{b1}\omega/\pi\pi\Upsilon(nS)\sim$ one order of magnitude higher at $\Upsilon(10753)$ than at $\Upsilon(5S)$

$\Upsilon(10753) \rightarrow \chi_{b0} \omega$ and $\eta_b \omega$

• Tetraquark interpretation of this state predicts enhancement of $\Upsilon(10753) \to \eta_b(1S)\omega$

$$\frac{\Gamma(\omega\eta_b)}{\Gamma(\Upsilon\pi^+\pi^-)} \sim 30$$

• we measure η_b indirectly by using recoil mass $M_{\rm recoil}(\omega) = \sqrt{(E_{\rm cm}-E_\omega)^2-p_\omega^2}$

$$\sigma_{\rm B}(e^+e^- \to \eta_b(1S)\omega) < 2.5 \,{\rm pb},$$

 $\sigma_{\rm B}(e^+e^- \to \chi_{b0}(1P)\omega) < 8.7 \,{\rm pb}.$

Summary

- \bullet Belle II has collected over $0.4~{\rm ab}^{-1}$ data sample in its first 3 years of operation before LS1, and started Run 2 data taking in Feb. this year.
- With the data set of ~1/2 the size of Belle, the physics precision of Belle II results are comparable or better in many analyses.
- Recent Belle II physics highlights include first evidence for $B^+ \to K^+ \nu \bar{\nu}$, and inclusive test of LFU with $B \to X \tau \nu$.
- In addition, we have presented interesting new results in charm baryons and bottomonium spectroscopy.
- ullet Run 2 is underway with the goal of collecting a several ab^{-1} data in the next few years.

Thank you!

Appendices

Belle II Physics Mind-map

$e^+e^- \rightarrow \Upsilon(4S)$ as a *B*-factory

- $\mathcal{B}(\Upsilon(4S) \to B\overline{B}) > 96\%$, with $p_B^{CM} \sim 0.35$ GeV/c
- nothing else but $B\overline{B}$ in the final state \therefore if we know (E, \vec{p}) of one B, the other B is also constrained

Key variables of B decays

$$\Delta E = E_B^* - \sqrt{s/2}$$

$$M_{bc} = \sqrt{(\sqrt{s/2})^2 - \vec{p}_B^{*2}}$$

How to handle a missing particle at Belle II?

 $\bullet e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

ullet only two B mesons in the final state

- Since the initial state is clearly determined, fully accounting one B ($B_{\rm tag}$) makes it possible to constrain the accompanying B ($B_{\rm sig}$)
- Having a single missing particle (e.g. ν) is usually as clean as getting all particles measured
- The price to pay is a big drop of efficiency ($< \mathcal{O}(1\%)$)

How to handle a missing particle at Belle II?

 $\bullet e^+e^- \to \Upsilon(4S) \to B\overline{B}$

- ullet only two B mesons in the final state
- Since the initial state is clearly determined, fully accounting one B ($B_{\rm tag}$) makes it possible to constrain the accompanying B ($B_{\rm sig}$)
- Having a single missing particle (e.g. ν) is usually as clean as getting all particles measured
- The price to pay is a big drop of efficiency ($< \mathcal{O}(1\%)$)

Full Event Interpretation (FEI)

- lacktriangle FEI algorithm to reconstruct $B_{
 m tag}$
 - uses \sim 200 BDT's to reconstruct $\mathcal{O}(10^4)$ different B decay chains
 - ullet assign signal probability of being correct $B_{
 m tag}$

Comput Softw Big Sci 3, 6 (2019)

arXiv:2008.060965

$R(D^*)$ from Belle II

- First $R(D^*)$ result from Belle II
- Analysis features
 - Use hadronic B-tagging with FEI (slide 34)
 - leptonic τ decays, $\tau^+ \to \ell^+ \nu_\ell \bar{\nu}_\tau$
 - three D^* modes: $D^{*+} \to D^0 \pi^+$, $D^+ \pi^0$ and $D^{*0} \to D^0 \pi^0$
- Signal $(B \to D^*\tau^+\nu)$ & Normalization $(B \to D^*\ell^+\nu)$
 - extracted simultaneously
 - by fitting 2D $(M_{\rm miss}^2, E_{\rm ECL})$

$R(D^*)$ from Belle II

- Signal $(B \to D^*\tau^+\nu)$ & Normalization $(B \to D^*\ell^+\nu)$
 - extracted simultaneously
 - by fitting 2D $(M_{\rm miss}^2, E_{\rm ECL})$

$$M_{\rm miss}^2 \equiv (p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell})^2$$

 $E_{\rm ECL} = {\rm extra~energy~(unmatched)~in~the}$ EM calorimeter

 $\mathcal{L}_{int} = 189 \text{ fb}^{-1}$

1 1.2 1.4 1.6 1.8

 $D*\tau v$

Hadronic B

Fit uncertainty

Belle II Preliminary $D^{*+} \rightarrow D^0 \pi^+$

0.2 0.4 0.6 0.8 1 1.2 E_{ECL} [GeV]

 $E_{
m ECL}$ for signal-enhanced region

 $1.5 < M_{\rm miss}^2 < 6.0 \text{ GeV}^2$

 $L dt = 189.3 \text{ fb}^{-1}$

 $1.5 < M_{\text{miss}}^2 < 6.0 \text{ GeV}^2/c^4$

Candidates / (0.1 GeV)

Pull

20

10

$R(D^*)$ from Belle II

• Fit projections for the sub-mode $D^{*+} \rightarrow D^0 \pi^+$

$$R(D^*) = 0.262^{+0.041}_{-0.039}^{+0.031}_{-0.032}$$

Systematics

FU test in Belle II

- dominant sources: E_{ECL} PDF shape, MC statistics

Belle II

some corrections & validations

FIG. 4. Efficiency of reconstructing an energy deposit in the ECL matched to the $K_{\rm L}^0$ direction as a function of the $K_{\rm L}^0$ energy for data and simulation selected with the ITA analysis.

FIG. 22. Distribution of ΔE in data obtained for $B^+ \to (K^+, \pi^+)D^0$ decays reconstructed as $B^+ \to K^+\nu\bar{\nu}$ events with the daughters from the D^0 decays removed.

The relative abundance \overline{D}^0K^+ to $\overline{D}^0\pi^+$ for data vs. MC is found to be consistent w/ expectation with 1.03 ± 0.09

Signal efficiency validation (ITA)

Charm baryon decays $\Xi_c^0 \to \Xi^0 h^0$

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for $\Xi_c^0 \to \Xi^0 h^0$ decays. Branching fractions are given in units of 10^{-3} .

Reference	Model	$\mathcal{B}(\Xi_c^0 o \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta)$	${\cal B}(\Xi_c^0 o\Xi^0\eta')$	$\frac{\overline{\alpha(\Xi_c^0 \to \Xi^0 \pi^0)}}$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Cheng, Tseng [8]	CA	17.1	-	-	0.54
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Ivanov $et \ al. \ [6]$	quark	0.5	3.7	4.1	0.94
Sharma, Verma [11]	CA	-	-	-	-0.8
Geng $et \ al. \ [12]$	$\mathrm{SU}(3)_{\mathrm{F}}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng $et \ al. \ [13]$	$\mathrm{SU}(3)_{\mathrm{F}}$	$7.6 {\pm} 1.0$	10.3 ± 2.0	$9.1 {\pm} 4.1$	$-1.00^{+0.07}_{-0.00}$
Zhao $et al. [14]$	$\mathrm{SU}(3)_{\mathrm{F}}$	$4.7 {\pm} 0.9$	$8.3 {\pm} 2.3$	$7.2 {\pm} 1.9$	-
Zou <i>et al.</i> [10]	pole	18.2	26.7	-	-0.77
Huang $et \ al. \ [15]$	$\mathrm{SU}(3)_{\mathrm{F}}$	$2.56 {\pm} 0.93$	-	-	-0.23 ± 0.60
Hsiao $et al. [16]$	$\mathrm{SU}(3)_{\mathrm{F}}$	$6.0 {\pm} 1.2$	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao $et al. [16]$	$SU(3)_F$ -breaking	$3.6 {\pm} 1.2$	7.3 ± 3.2	-	-
Zhong $et \ al. \ [17]$	$\mathrm{SU}(3)_{\mathrm{F}}$	$1.13^{+0.59}_{-0.49}$	$1.56 {\pm} 1.92$	$0.683^{+3.272}_{-3.268}$	$0.50^{+0.37}_{-0.35}$
Zhong et al. $[17]$	$SU(3)_F$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29^{+0.20}_{-0.17}$
Xing <i>et al.</i> [18]	$\mathrm{SU}(3)_{\mathrm{F}}$	1.30 ± 0.51	-	-	-0.28 ± 0.18