RECENT RESULTS FROM THE BELLE II EXPERIMENT

Eugenio Paoloni INFN & Università di Pisa on behalf of the Belle II collaboration

Summary

- >The SuperKEKB collider.
- >The Belle II detector.
- > Search for:
 - >Z' in invisible,
 - $> \tau^+ \tau^-$ resonances,
 - > long lived particles in $b \rightarrow s$ transitions.
- > Conclusions

TAUP 2023 Vienna, August the 29th 2023

THE SUPERKEKB COLLIDER

- Asymmetric $e^+(4 \, GeV)e^-(7 \, GeV)$ collider operating close to the $\Upsilon(4S)$ peak (10.58 GeV)
- Center of mass frame boost $\beta \gamma = 0.28$
- World record luminosity: $4.65 \times 10^{34} \,\mathrm{cm^{-2}s^{-1}}$ (4.71 × $10^{34} \,\mathrm{cm^{-2}s^{-1}}$ w/o Belle II data taking)
- Luminous region size: $250 \text{nm} \times 25 \mu \text{m} \times 250 \mu \text{m}$
- ◆ Integrated luminosity: 427 fb⁻¹
- ◆ In long shut-down till fall 2023
 - Installation of the full PXD
 - Machine improvements to reduce the machine bkg. and improve luminosity.
- Aiming for: $\mathcal{L} > 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} = 600 \text{ nb}^{-1}/\text{s}$ $\int \mathcal{L}dt > 50 \text{ ab}^{-1}$

THE BELLE II DETECTOR

BELLE II & SUPERKEKB KEY POINTS

- Initial state kinematic extremely well defined:
 - initial energy and momentum, interaction point (IP)
- Small cross sections for the main Physics searches $\mathcal{O}(1\text{nb})$
 - very mild requirements on the L1 trigger event selection, e.g.:
 - → single muon trigger using KLM
 - → single photon trigger
 - negligible pile-up.
 - ◆ Bunch crossing ~ 250 MHz, L1 trigger rate ~ 10⁴ cps.

SEARCH FOR Z' IN INVISIBLE

Phys. Rev. Lett. 130, 231801 (2023)

- Our Z' candidate is a massive neutral vector boson mediating a new force associated to $L_{\mu}-L_{\tau}$
- ◆ The interaction is described by the interaction lagrangian density (1):

$$\begin{split} \mathcal{L}_{I} &= -\frac{1}{4} \left(\partial_{\mu} Z_{\nu}^{\prime} - \partial_{\nu} Z_{\mu}^{\prime} \right) \left(\partial^{\mu} Z^{\prime \nu} - \partial^{\nu} Z^{\prime \mu} \right) + \frac{1}{2} m_{Z^{\prime}}^{2} Z_{\mu}^{\prime} Z^{\prime \mu} + \\ &+ g^{\prime} Z^{\prime \mu} \left(\overline{\mu_{R}} \gamma_{\mu} \mu_{r} - \overline{\tau_{R}} \gamma_{\mu} \tau_{r} + \dots \right) + g_{D}^{\prime} \left(\text{Dark Sector Particles} \right) \end{split}$$

1. cfr: Phys. Rev. D 89, 113004 (2014), Phys. Rev. Lett. 113, 091801 (2014), J. High Energy Phys. 12 (2016) 106.

- BF($Z' \rightarrow \nu \overline{\nu}$) ~ 33 100 % (Vanilla model)
- BF($Z' \rightarrow \chi \overline{\chi}$) ~ 100 % if kinematically allowed

EVENT SIGNATURE AND MAIN BACKGROUNDS

Phys. Rev. Lett. 130, 231801 (2023)

- Event signature: two oppositely charged muons.
 - ◆ Negligible activity in the calorimeter
 - Missing momentum squared = $M_{Z'}^2$ (unknown)
- ◆ Dominant background sources:
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ with the final e^+e^- pair undetected
 - $e^+e^- \to \tau^+\tau^-(\gamma)$ with leptonic τ decays and missing neutrinos
 - $e^+e^- \rightarrow \mu^+\mu^- n(\gamma)$ with undetected gammas
 - ◆ Key quantity: missing four momentum

- Online trigger:
 - at least two charged tracks in the region $120^{\circ} > \vartheta > 37^{\circ}$
 - transverse opening angle of the two muon candidates > 90°, 2019 (30°, 2020)
- Offline event selection:
 - exactly two oppositely charged tracks identified as muons
 - photon veto: ECL energy of neutral particles < 500 MeV
 - missing momentum $\overrightarrow{p}_{\text{miss.}}$ (i.e. momentum of the Z') well within the barrel ECL acceptance:
 - $|\overrightarrow{p}^t_{\text{miss.}}| > 500 \text{ MeV/c}$
 - no ECL detected photons within 15° from the missing momentum

ANALYSIS RESULTS

Phys. Rev. Lett. 130, 231801 (2023)

- Data-set 2019-2020: $\int \mathcal{L}dt = 79.7 \text{ fb}^{-1}$
- Neural network to further suppress tau bkg.
- Overall efficiency ~ 5%
- No excess observed for $M_{\text{recoil}}^2 < 80 \,\text{GeV}^2/c^4$

Search for $au^+ au^-$ resonance in $e^+e^- o \mu^+\mu^- au^+ au^-$

Accepted for publication by PRL, arXiv:2306.12294

- ◆ A pair of oppositely charged muons
- ◆ A pair of oppositely charged tau → 1 prong
- Missing energy and missing momentum from the neutrinos
- ◆ The four momentum of the X (Z',S or ALP) is:

$$p_X = p_{e^+} + p_{e^-} - p_{\mu^+} - p_{\mu^-}$$

• No peaking structure observed on the p_X^2 spectrum

LIMITS ON MODEL PARAMETERS

Accepted for publication by PRL, arXiv:2306.12294

◆ Limits on the cross section translated to limits on Model Parameters

Leptophilic Scalar, S

Axion Like Particle

SEARCH FOR LONG LIVED PARTICLES IN b o s TRANSITIONS

arXiv:2306.02830

- Search for a long lived (Pseudo) Scalar particle S ($100 \,\mathrm{cm} > c\tau > 10 \,\mu\mathrm{m}$) decaying inside the tracking volume in
 - \bullet $e^+e^-, \mu^+\mu^-, \pi^+\pi^-, K^+K^-$
- S is produced by the decay $B^+ \to K^+S$ or $B^0 \to K^{*0} S$
- ◆ No excess found in 189 fb⁻¹, limits are set

CONCLUSIONS

- ◆ The clean environment of Belle II together with a large amount of data, good detector performance, dedicated and talented people make the Belle II experiment an ideal place for the study of the Dark Sector.
- ◆ No excess still observed, new competitive limits are set
- ◆ The long shut down is ending and a larger data set together with an improved detector is on the way.
- Stay tuned for more to come.

Backup material

CAVEAT EMPTOR (HOT FROM THE PRESS)

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm (The Muon g-2 Collaboration)

(Dated: 10th August, 2023)

In the following it is still assumed a $_{\mu}$ = 116 592 061 (41) x 10⁻¹¹ instead of the last world average a $_{\mu}$ = 116 592 059 (22) x 10⁻¹¹

