
Recent quarkonium results at Belle II

Yang Li (Fudan University)
On behalf of the Belle II Collaboration

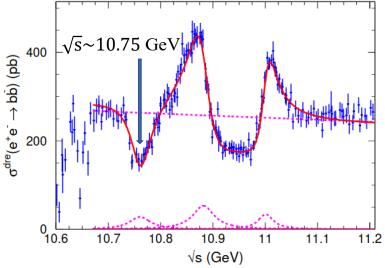
31st Lepton Photon Conference 17-21 July 2023

Bottomonium

☐ The states with other quantum numbers can be produced via hadronic or radiative transitions.

- Heavy quarkonium spectroscopy is an excellent laboratory to study non-perturbative QCD!
- Below BB threshold states are well described by the potential models.
- □ Above BB threshold states exhibit unexpected properties:
- The transitions to lower bottomonium with the emission of light hadrons are not suppressed (violate OZI);
- The η transitions are not suppressed compare to $\pi^+\pi^-$ transitions (violate HQSS);
- Two charged Z_b⁺ states are observed.
 - Conventional bottomonium (pure $b\bar{b}$ states)
 - Bottomonium-like states (mix of $b\overline{b}$ and $B\overline{B}$)
 - Purely exotic charged states (Z_b⁺)

Discovery of $\Upsilon(10753)$

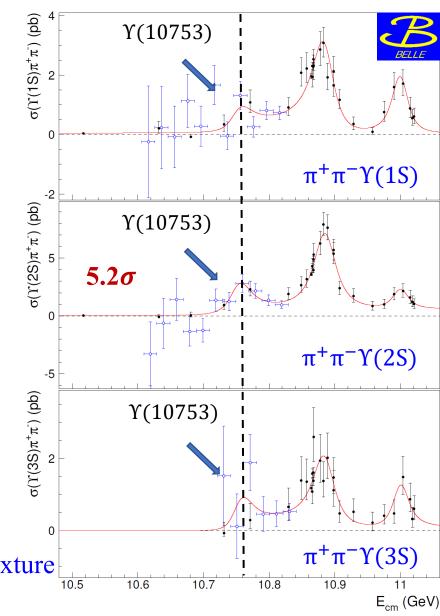


□ The $\Upsilon(10753)$ was observed in the energy dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1,2,3) cross sections by Belle.

[JHEP 10, 220 (2019)]

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

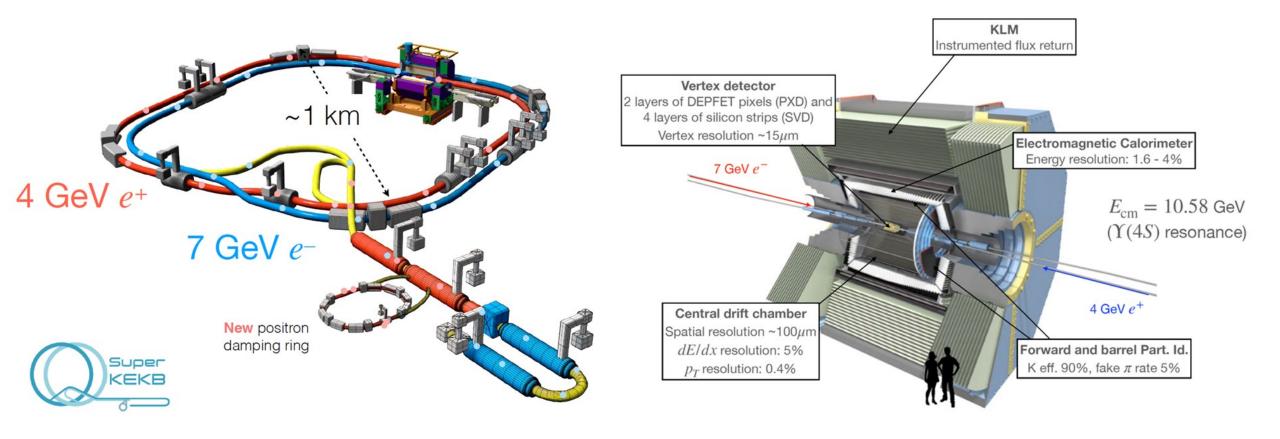
 \blacksquare Refit of Babar and Belle $\sigma(e^+e^- \rightarrow b\overline{b})$ [CPC 44 (2020) 8, 083001]:



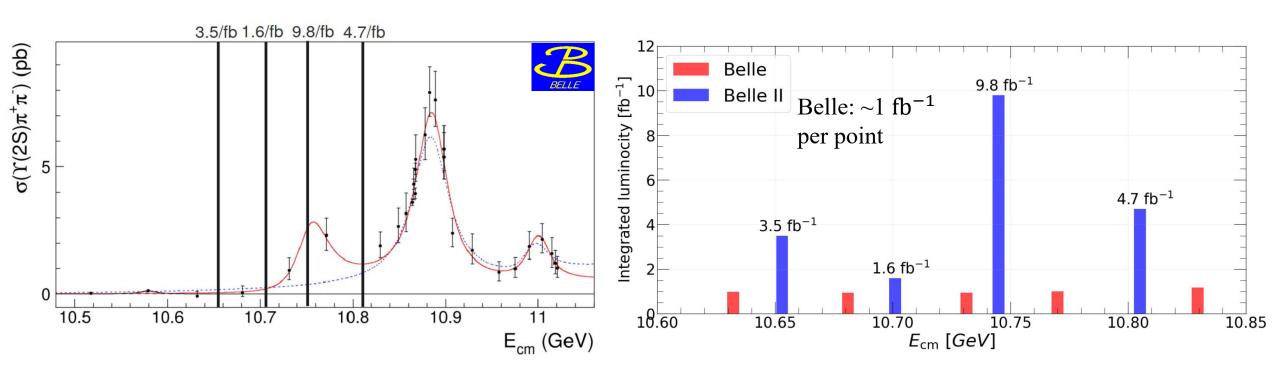
Dip near 10.75 GeV likely caused by interference between BW and smooth component.

□ Possible interpretations:

- Conventional bottomonium?
- Hybrid state?
- Tetraquark state?


Hadronic molecule with a small admixture of a bottomonium?

Belle II experiment


- ☐ Asymmetric e⁺e⁻ collider at KEK provides unique clean environment.
- Upgraded detector (better vertex and particle identification performances).
- \square World-record instantaneous luminosity: $4.7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ (\times 2 of the Belle peak luminosity).
- \square Total integrated luminosity: 424fb⁻¹.

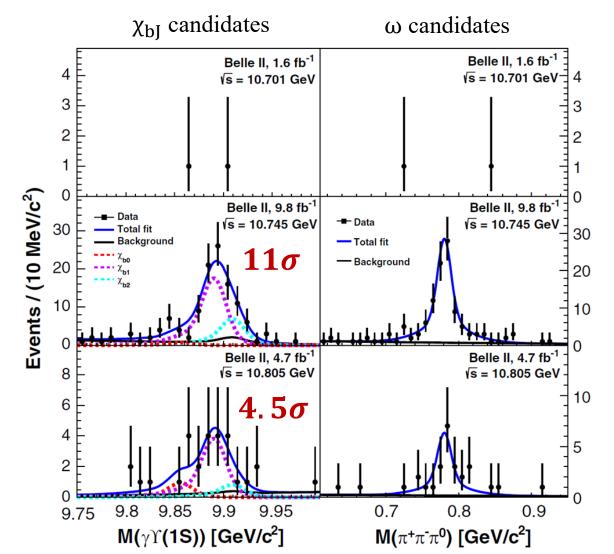
Unique scan data near $\sqrt{s} = 10.75$ GeV

- ☐ In November 2021, Belle II collected 19fb⁻¹ of scan data at four energy points near 10.75 GeV.
- \square Physics goals: (1) understand the nature of the $\Upsilon(10753)$;
 - (2) improve precision of exclusive cross-sections below $\Upsilon(5S)$.

Observation of $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ and search for $X_b \rightarrow \omega \Upsilon(1S)$ at \sqrt{s} near 10.75 GeV

[PRL 130 091902 (2023)]

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}(1P)$

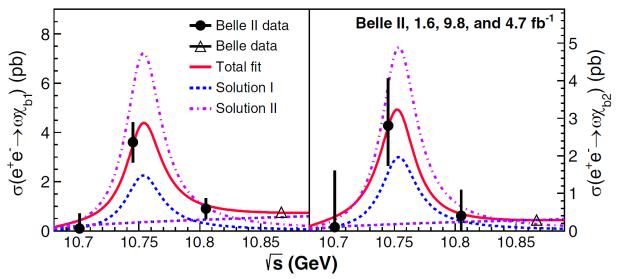


Interpretations as an admixture of conventional 4S and 3D states predict comparable branching fractions of 10^{-3} for $\Upsilon(10753) \to \pi^+\pi^-\Upsilon(nS)$ and $\Upsilon(10753) \to \omega\chi_{bl}(1P)$.

[PRD104, 034036 (2021), PRD 105, 074007 (2022)]

Channel	$\sqrt{s} \; (\mathrm{GeV})$	$N^{ m sig}$	$\Sigma(\sigma)$	$\sigma_B \text{ (pb)}$
$e^+e^- \to \omega \chi_{b0}$	10.701	< 3.0	-	< 16.6
$e^+e^- \to \omega \chi_{b1}$		< 3.9	-	< 1.2
$e^+e^- \to \omega \chi_{b2}$		< 4.0	_	< 2.5
$e^+e^- \to \omega \chi_{b0}$	10.745	< 12.0	0.5	< 11.3
$e^+e^- \to \omega \chi_{b1}$		$68.9^{+13.7}_{-13.5}$	5.9	$3.6^{+0.7}_{-0.7} \pm 0.5$
$e^+e^- \to \omega \chi_{b2}$		$27.6^{+11.6}_{-10.0}$	3.1	$2.8^{+1.2}_{-1.0} \pm 0.4$
$e^+e^- \to \omega \chi_{b0}$	10.805	< 9.9	1.2	< 11.4
$e^+e^- \to \omega \chi_{b1}$		$15.0^{+6.8}_{-6.2}$	2.7	< 1.7
$e^+e^- \to \omega \chi_{b2}$		$3.3_{-3.8}^{+5.3}$	0.8	< 1.6

■ We perform two dimensional un-binned maximum likelihood fits to the M(γY(1S))and M($\pi^+\pi^-\pi^0$) distributions.


Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bl}(1P)$

- □ The e⁺e⁻ \rightarrow ωχ_{bJ}(1P) [J = 1,2] cross sections are enhanced at Y(10753).
- □ Combine Belle II measurements with Belle measurement [PRL 113, 142001(2014)] to fit cross sections:

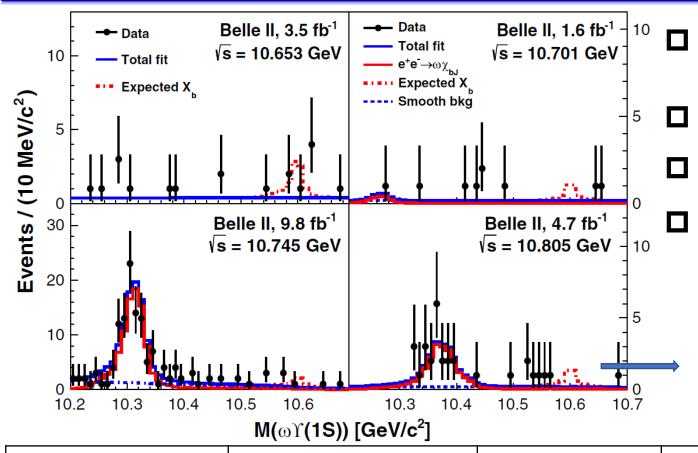
 $\left| \sqrt{\Phi_2(\sqrt{s})} + \frac{\sqrt{12\pi\Gamma_{ee}\mathcal{B}_f\Gamma}}{s - M^2 - iM\Gamma} \sqrt{\frac{\Phi_2(\sqrt{s})}{\Phi_2(M)}} e^{i\phi} \right|^2$

The mass and width are fixed to the 10752.7 MeV/ c^2 and 35.5 MeV. [JHEP 10, 220 (2019)]

Solution I: Constructive interference Solution II: Destructive interference

$$\frac{\sigma(e^+e^-\to\omega\chi_{bJ}(1P))}{\sigma(e^+e^-\to\pi^+\pi^-\Upsilon(nS))} \sim 1.5 \text{ at } \sqrt{s} = 10.745 \text{ GeV}$$

$$\sim 0.15 \text{ at } \sqrt{s} = 10.867 \text{ GeV}$$


 \square It may indicate different internal structures for $\Upsilon(10753)$ and $\Upsilon(5S)$.

$$\frac{\sigma(e^+e^-\to\omega\chi_{b1}(1P))}{\sigma(e^+e^-\to\omega\chi_{b2}(1P))} = 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV}$$

- □ Contradicts the expectation for a pure D-wave bottomonium state of 15 [PLB 738, 172 (2014)].
- \square A 1.8 σ difference with the prediction for a S-D-mixed state of 0.2 [PRD 104, 034036 (2021)].

Search for $X_b \rightarrow \omega \Upsilon(1S)$

- \square The X_b is the posited bottomonium counterpart of the X(3872);
- \square No evidence of X_b signal;
- □ The peaks are the reflections of $e^+e^- \rightarrow \omega \chi_{bJ}$.
- □ Upper limits on cross sections are set for $M(X_b) \in [10.45, 10.65]$ GeV.

From simulated events with $m(X_b) = 10.6 \text{ GeV}/c^2$ The yield is fixed at the upper limit at 90% C.L.

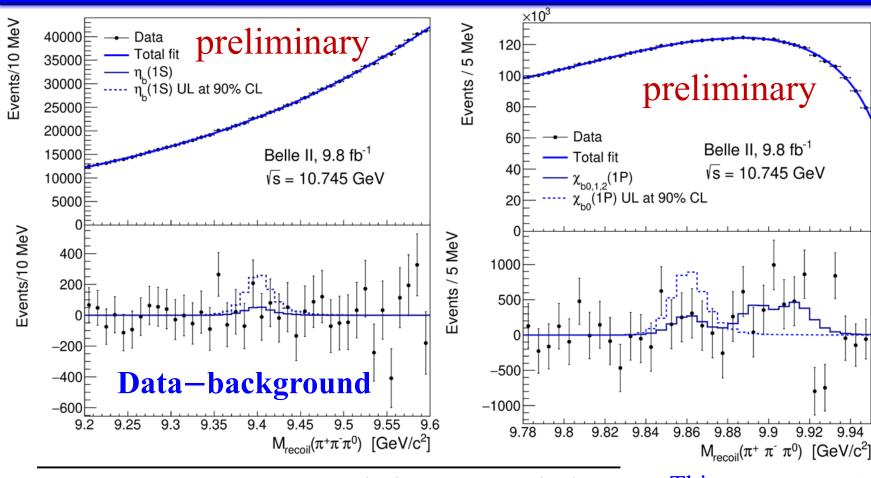
					_
)%	$\sqrt{s}(GeV)$	10.653	10.701	10.745	10.805
	$m(X_b) = 10.6 \text{ GeV}$	0.46	0.33	0.10	0.14
•))	m(X _b) = (10.45,10.65) GeV	(0.14, 0.55)	(0.25, 0.84)	(0.06, 0.14)	(0.08, 0.37)

Search for
$$e^+e^- \rightarrow \omega \eta_b(1S)$$
 and $e^+e^- \rightarrow \omega \chi_{b0}(1P)$ at $\sqrt{s} = 10.745$ GeV with Belle II

[New for this conference]

Search for $e^+e^- \rightarrow \omega \eta_b(1S)/\chi_{b0}(1P)$

Tetraquark interpretation of the $\Upsilon(10753)$ predicts enhancement of the $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ transition:


$$\frac{\Gamma(\omega\eta_b)}{\Gamma(\pi^+\pi^-\Upsilon)}$$
 ~30 [CPC 43, 123102 (2019)]

- The $e^+e^- \rightarrow \omega \chi_{bJ}(1P)(J=1,2)$ was found to be enhanced at $\sqrt{s}=10.745$ GeV. The $e^+e^- \rightarrow \omega \chi_{b0}(1P)$ transition was not observed due to low branching fraction $\mathcal{B}(\chi_{b0}(1P) \rightarrow \Upsilon(1S)\gamma) = (1.94 \pm 0.27)\%$. [PRL 130 091902 (2023)]
- In this work, we reconstruct the ω meson via the $\pi^+\pi^-\pi^0$ mode, and then search for the $\eta_b(1S)$ and $\chi_{b0}(1P)$ states in the recoil mass spectrum of ω candidate.

$$M_{recoil}(\pi^+\pi^-\pi^0) = \sqrt{\left(\frac{E_{cm} - E^*}{c^2}\right)^2 - \left(\frac{p^*}{c}\right)^2}$$

$M_{\rm recoil}(\pi^+\pi^-\pi^0)$

- No clear $\eta_b(1S)$ and $\chi_{b0}(1P)$ signals are observed.
- ☐ Upper limits at the 90% C.L. on the Born cross sections are set.

	$\eta_b(1S)\omega$	$\chi_{b0}(1P)\omega$
$\overline{\text{Yield } (10^3)}$	$0.23 \pm 0.49 \pm 0.25$	$1.2 \pm 1.4 \pm 0.9$
Born cross section (pb)	$0.5 \pm 1.1 \pm 0.6$	$2.6 \pm 3.1 \pm 2.0$
Upper limit at 90% CL	< 2.5	< 8.6

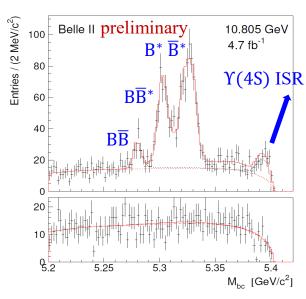
This measurement and JHEP 10, 220 (2019):

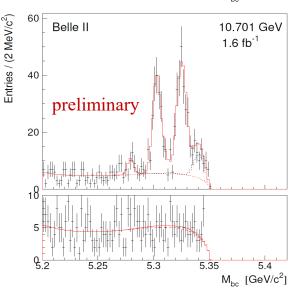
$$\sigma^{B}(e^{+}e^{-} \rightarrow \eta_{b}(1S)\omega) < 2.5pb@10.745 \text{ GeV}$$

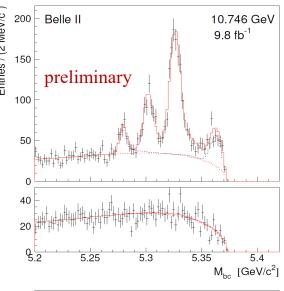
 $\sigma^{B}(e^{+}e^{-} \rightarrow \Upsilon(nS)\pi^{+}\pi^{-}) \sim 5pb@10.75 \text{ GeV}$

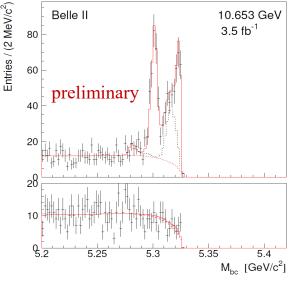
□ The measured cross-section contradicts the prediction of tetraquark model in Ref. [CPC 43, 123102 (2019)].

Measurement of the energy dependence of the $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ cross sections at Belle II

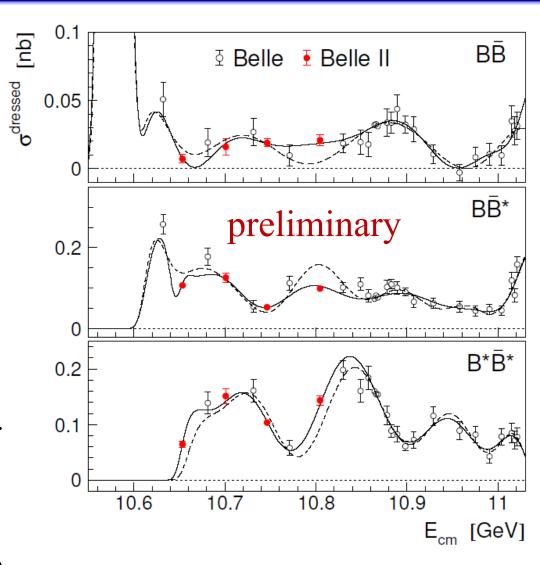

$e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ cross sections




- □ The $B^{(*)}\overline{B}^{(*)}$ are expected to be dominant decay channels for excited bottomonium-like states.
- The measured cross sections can be used in the coupled channel analysis of all available scan data to extract the parameter of $\Upsilon(10753)$.
- Method:
- Fully reconstruct one B in hadronic decays;
- Identify signals with M_{bc}:


$$M_{bc} = \sqrt{(E_{cm}/2)^2 - p_B^2}$$

 \square Contribution of $\Upsilon(4S) \to B\overline{B}$ production via ISR is visible, well described by the fit.

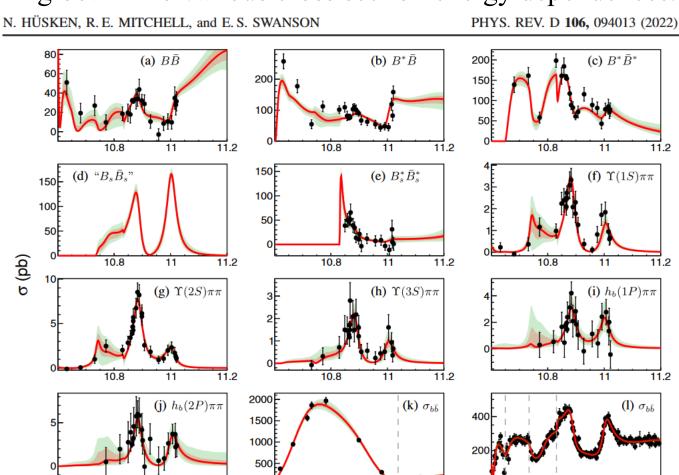


$e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ cross sections

- □ σ(e⁺e⁻ → B*B*) increases rapidly above B*B* threshold. The energy of the nearby point is only 5MeV above the threshold. High value of the cross section is surprising since the phase space of this reaction grows as the 3/2 power of the difference between the beam energy and the threshold energy.
- Possible interpretation: resonance or bound state of $B^*\overline{B}^*$ (or $b\overline{b}$) near threshold [MPLA 21, 2779 (2006)].
- Also explains a narrow dip in $\sigma(e^+e^- \to B\overline{B}^*)$ near $B^*\overline{B}^*$ threshold by destructive interference between $e^+e^- \to B\overline{B}^*$ and $e^+e^- \to B^*\overline{B}^* \to B\overline{B}^*$.
- The $\Upsilon(nS)\pi^+\pi^-$ and $h_b(1P)\eta$ final states could also be enhanced [PRD 87, 094033 (2013)].

Solid curve – combined Belle + Belle II data fit Dashed curve – Belle data fit only

Summary


- □ Observation of $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ near $\sqrt{s} = 10.75$ GeV:
- $\sigma(e^+e^- \to \omega \chi_{bJ}(1P))[J = 1,2]$ has a strong enhancement at 10.75 GeV;
- Confirmation of $\Upsilon(10753)$ and observation of its new decay channel.
- \square Search for $e^+e^- \rightarrow \omega \eta_b(1S)$ and $e^+e^- \rightarrow \omega \chi_{b0}(1P)$:
- No signals are observed, and upper limits on the Born cross sections are set;
- The measured cross-section contradicts the prediction of tetraquark model.
- \Box Energy dependency of $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$, and $B^*\overline{B}^*$ cross sections:
- Confirmation of "oscillatory" behavior, improvement of the accuracy;
- Rapid rise of $\sigma(e^+e^- \to B^*\overline{B}^*)$ above threshold—resonance or bound state of $B^*\overline{B}^*$?

Thanks for your attention!

Backup

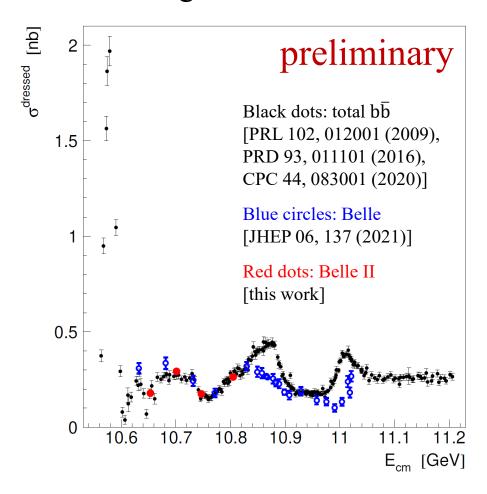
☐ Uses the coupled-channel approach to perform a global fit to various cross section energy dependences.

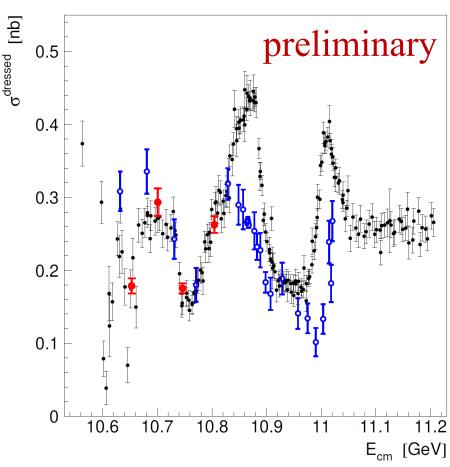
10.58

√s (GeV)

10.62

- ☐ Using data:
- Two-body exclusive cross sections $\sigma\left(e^{+}e^{-} \to B_{(s)}^{(*)} \overline{B}_{(s)}^{(*)}\right);$
- Three-body exclusive cross sections $\sigma(e^+e^- \rightarrow \Upsilon(nS)/h_b(mP)\pi^+\pi^-)$ (n = 1,2,3; m = 1,2);
- Combined Belle and Babar R_b measurements.
- □ Includes $\Upsilon(4S)$, $\Upsilon(10753)$, $\Upsilon(5S)$, and $\Upsilon(6S)$ poles.


□Results:


pole positions (masses and widths) and energy dependence of scattering amplitudes.

Backup

- ☐ Good agreement at low energy.
- **□** Deviation at higher energy is presumably due to $B_s^{(*)}$, multi-body $B^{(*)}\overline{B}^{(*)}\pi(\pi)$ and production of bottomonia with light hadrons.

