Recent Belle II results on hadronic B decays

Xiaodong Shi (KEK)
On behalf of the Belle II Collaboration

31st Lepton Photon Conference N

MELBOURNE CONVENTION O
& EXHIBITION CENTRE

Hadronic B decays

 $b \rightarrow c, u$ trees and $b \rightarrow d, s$ penguins.

Measure all three CKM angles:

- $\quad \phi_1 \text{ with } B^0 \to J/\psi K^0_{\varsigma}, B^0 \to \phi K^0_{\varsigma}, B^0 \to K^0_{\varsigma} K^0_{\varsigma} K^0_{\varsigma}, B^0 \to K^0_{\varsigma} \pi^0 \dots$
- ϕ_2 with $B \to \rho \rho, B \to \pi \pi$ isospin analysis,
- ϕ_3 with $B^{\pm} \to DK^{\pm}$, few different methods, and test Isospin sum rules, ...

In my talk:

- ϕ_3 results with GLW and GLS methods,
- ϕ_2 results with $B \to \pi\pi$,
- $K\pi$ sum rule test,
- observation of new $B \to D^{(*)} K^- K^0_{\varsigma}$ decays.

For ϕ_1 results: see Michele's talk today 2:45 PM@Flavour.

Analysis workflow

~20% of hadronic events from e^+e^- are $B\bar{B}$.

10 tracks/clusters on average → easy to trigger on unbiasing variables (e.g. number of tracks)

Main backgrounds: $e^+e^- \rightarrow q\bar{q}$ (collimated jets); B process due to misID.

Reconstruction: all final state particle formed to ${\it B}$ meson

Selection: event-shape variables based classifier to suppress $q\bar{q}$ background; particle ID criteria

Fit: usually on $\Delta E, M_{\mathrm{DC}}$ classifier output (C'), etc...

Systematic uncertainties: toy studies, control modes

Validation & unblinding: validate the full analysis on a control channel; frozen all procedure when open box.

ϕ_3 from $B^{\pm} \to DK^{\pm}$ decays

- Depends on the D decay final states, different methods:
 - BPGGSZ: self conjugated multi-body decays, e.g. $K_S^0 h^+ h^-$
 - GLW: CP eigenstates, e.g. $K_S^0\pi^0, K^+K^-$
 - GLS: SCS decays, e.g. $K_S^0 K^\mp \pi^\pm$
 - ADS: CF & DCS decays, e.g. $K^{\mp}\pi^{\pm}$
 - •

- CPV in the interference between $b \to c \bar{u} s$ and $b \to u \bar{c} s$
- Irreducible error in SM calculation $\sim\!10^{-7}$ [arXiv:1308.5663]

• W.A. $\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$ [HFLAV], dominated by LHCb.

$$\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ$$
[JHEP 02 2022, 063 (2022)]

Events / (5 MeV)

Pull

ϕ_3 with GLW method (CP eigenstates)

$$B^\pm o DK^\pm$$
 with $D o K^+K^-$ (CP-even) or $D o K^0_S \pi^0$ (CP-odd)

Belle(II)'s advantage

$$R_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to \bar{D}^0K^+)} \begin{cases} \mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036, \\ \mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019, \end{cases}$$

$$A_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)} \begin{vmatrix} \mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%, \\ \mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%. \end{vmatrix}$$

$$\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$$
 $\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$
 $\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$
 $\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%.$

World average: $\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$, $r_B = 0.0994 \pm 0.0026$

Evidence for difference in $A_{CP^{\pm}}$. (3.5 σ)

Large R_{CP^+} compare to W.A. \rightarrow large r_B , but consistent with W.A. in 2.5 σ .

ϕ_3 with GLS method (SCS)

 $B^{\pm} \to DK^{\pm}, D\pi^{\pm}$ with $D \to K_S^0 K^{\pm}\pi^{\mp}$: SS: same-sign, OS: opposite sign.

Two sets of results: in full D phase space and in the K*K region (expected large δ_D).

Measure 4 Acp and 3 BR ratios.

Events / 10 MeV

In K*K region:

Consistent with LHCb's, but not competitive.

Contribute to constrain ϕ_3 in combination with other ϕ_3 -results from Belle and Belle II.

arXiv:2306.02940

ϕ_2 results with $B \to \pi\pi$

Loop-process

- The CKM angle with most poor precision at the moment: W.A. $\phi_2 = (85.2^{+4.8}_{-4.3})^\circ$ [HFLAV].
- Determined using $B \to \rho \rho$, $B \to \pi \pi$ isospin analysis: using the Br and A_{CP} to reduce hadronic uncertainties.

Unique Belle II capability to study all channels.

Last year: $\rho^+ \rho^0$, $\rho^+ \rho^-$ [arXiv:2206.12362, 2208.03554]

We have $\pi\pi$ results now.

For $\pi^0\pi^0$, achieve Belle Br precision using only 1/3 of data.

Belle II (Preliminary)

 $\int L dt = 362 \text{ fb}^{-1}$

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \cdot \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \cdot \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \cdot \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \approx 0$$

• SM prediction: 0 within 1% precision. [Phys. Lett. B627 (2005) 82-88]

• Current W.A.: $I_{K\pi} = -0.13 \pm 0.11$, major limitation from the $A_{K_{\rm S}^0\pi^0}$.

arXiv:2207.06307

Belle II unique possibility!

Isospin sum rule test in $K\pi$

$$B^0 \to K^+\pi^-$$

Br =
$$(20.67 \pm 0.37 \pm 0.62) \times 10^{-6}$$

 $A_{CP} = -0.072 \pm 0.019 \pm 0.007$

$$B^+ \to K_S^0 \pi^+$$

Br =
$$(24.40 \pm 0.71 \pm 0.86) \times 10^{-6}$$

 $A_{CP} = 0.046 \pm 0.029 \pm 0.007$

$$B^+ \to K^+ \pi^0$$

Br =
$$(14.21 \pm 0.38 \pm 0.85) \times 10^{-6}$$

 $A_{CP} = 0.013 \pm 0.027 \pm 0.005$

$$B^0 \to K_S^0 \pi^0$$

Br =
$$(10.16 \pm 0.65 \pm 0.65) \times 10^{-6}$$

 $A_{CP} = -0.06 \pm 0.15 \pm 0.05$

All results agree and are competitive with world's best.

Br systematically limited, major ones: π^0 , $f^{+-/00}$.

 $B^0 o K_S^0 \pi^0$ result combined with time-dependent analysis [arXiv:2206.07453]

$$\rightarrow$$
 world's best $A_{CP}(K_S^0\pi^0) = -0.01 \pm 0.12 \pm 0.05$

 $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$ (W.A. $I_{K\pi} = -0.13 \pm 0.11$)

Competitive precision to world's best with 362 fb⁻¹ data set.

More details in Michele's talk today 2:45 PM@Flavour.

$B \rightarrow D^{(*)}KK_S^0$ study

 $B \to D^{(*)}KK_S^0$ makes up few % BR, but only 0.28% measured.

3 new observations modes (D^+, D^{*0}, D^{*-}) ; x3 precision of D^0 mode.

arXiv:2305.01321

$$\mathcal{B}(B^{-} \to D^{0}K^{-}K_{S}^{0}) = (1.89 \pm 0.16 \pm 0.10) \times 10^{-4}$$

$$\mathcal{B}(\overline{B}^{0} \to D^{+}K^{-}K_{S}^{0}) = (0.85 \pm 0.11 \pm 0.05) \times 10^{-4}$$

$$\mathcal{B}(B^{-} \to D^{*0}K^{-}K_{S}^{0}) = (1.57 \pm 0.27 \pm 0.12) \times 10^{-4}$$

$$\mathcal{B}(\overline{B}^{0} \to D^{*+}K^{-}K_{S}^{0}) = (0.96 \pm 0.18 \pm 0.06) \times 10^{-4}$$

Improve simulation and help in B-tagging tool.

Summary

With 362/fb data set, new recent results from Belle II:

- ϕ_3 results with GLW, GLS methods.
- ϕ_2 results with $B \to \pi\pi$, with π^0 final states. Get same level ${\rm Br}(B^0 \to \pi^0\pi^0)$'s precision with only 1/3 data set.
- Sum rule test in $K\pi$: world's best $A_{CP}(K_S^0\pi^0)$, competitive $I_{K\pi}$ precision.
- $B \to D^{(*)}KK_S^0$: there decay channels observed for first time.

More results coming from Belle II! Stay tuned!

