

Outline

- The cram course
 - for Belle II and Belle experiments (details in Appendix 0)
- lacktriangledown on V_{xb} (x=c,u) tensions
 - V_{ub} from exclusive $B \to \pi \ell^+ \nu$ (Belle II)
 - simultaneous (inclusive & exclusive) V_{ub} (Belle)
- on LFU test
 - inclusive ratio $R(X_{e/\mu})$ (Belle II)
 - First Belle II result on $R(D^*)$
- Closing remarks

The cram course for B-mesons @ Belle & Belle II

$$e^{-} \xrightarrow{\text{8 GeV}} (\star)^{\text{3.5 GeV}} e^{+} \quad (1999-2010)$$

$$e^{-} \xrightarrow{\text{7 GeV}} (\star) \xleftarrow{\text{4 GeV}} e^{+} \quad \text{(since 2019)}$$

See Appendix 0 (p.25-31) for more

•
$$\sqrt{s} = 10.58 \text{ GeV} = m(\Upsilon(4S)) \text{ for both}$$

- Use $\Upsilon(4S) \to B\overline{B}$
- \exists continuum underneath $\Upsilon(4S)$

Belle II Physics Mind-map

Belle II Physics Mind-map

Chaim Phy analyses P. Lepton flavor violation Padjative charm decays Inclusive Measurements Vtd/Vts from penguins CKM Matrix Elements (Vcb, Vub) Exclusive measurements B. \(\(\text{D}(*) \) tau nu, lepton universality alpha, beta, gamma Time Dependent Measurements Direct T violation ivew physics phases in b->

Belle II Data

tensions in semileptonic B decays

Precision measurements of CKM UT

• Test of lepton universality in $R(D^{(*)})$

$$R(D^{(*)}) \equiv \frac{\mathscr{B}(B \to D^{(*)}\tau^{+}\nu)}{\mathscr{B}(B \to D^{(*)}\ell^{+}\nu)}$$

on V_{xh} (x = c, u) tensions

- $|V_{cb}|$ from exclusive B decays (Belle, Belle II) Appendix 1 in the back-up slides
- $|V_{ub}|$ from exclusive $B^0 \to \pi^- \ell^+ \nu$ (Belle II)
- lacksquare Simultaneous (incl. & excl.) $|V_{ub}|$ (Belle)

$\rightarrow \pi^- \ell^+ \nu$ for $|V_{ub}|$ (untagged)

- Belle II dataset of $\mathcal{L}_{int} = 189 \text{ fb}^{-1}$
- "untagged" analysis
 - aiming at highest signal efficiency
 - instead of tagging, just measure ROE for background suppression using (E, \vec{p}) cons.
- suppress $q\bar{q}$ & combinatoric backgrounds via BDT
- measure partial BF in 6 bins of q^2
 - signal extraction by binned 2D fit to $(M_{bc}, \Delta E)$

$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu)$$

= $(1.426 \pm 0.056 \pm 0.125) \times 10^{-4}$

$B^0 o \pi^- \mathcal{E}^+ \nu$ for $|V_{ub}|$ (untagged)

lacksquare Extract $|V_{ub}|$ from the partial BF

$$\frac{d\Gamma(B \to \pi \ell^+ \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_{\pi}|^3 |f_+(q^2)|^2$$
 in the limit $m_{\ell}^2 = 0$

lacksquare BCL expansion for $|V_{ub}|$

 Lattice QCD input from FNAL/MILC on the eight BCL parameters

Bourrely, Lellouch, Caprini, PRD 79, 013008 (2009)

$$|V_{ub}|_{B^0 \to \pi^- e^+ \nu} = (3.60 \pm 0.18 \pm 0.14 \pm 0.18) \times 10^{-3}$$

 $|V_{ub}|_{B^0 \to \pi^- \mu^+ \nu} = (3.71 \pm 0.16 \pm 0.15 \pm 0.17) \times 10^{-3}$

$$|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu} = (3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}$$

Simultaneous (incl. & excl.) $|V_{ub}|$

- Measure $B \to X_u \mathscr{E}^+ \nu$, $B^0 \to \pi^- \mathscr{E}^+ \nu$, $B^+ \to \pi^0 \mathscr{E}^+ \nu$ simultaneously
- B-tagging by hadronic decays
 - ANN-based tagging of companion B
 - allows reconstruction of X_u in $B \to X_u \mathcal{E}^+ \nu$
- lacksquare b o c is suppressed using M_X , and further by BDT
 - 11 features for training $(M_{\rm m}^2, \chi_{\rm vtx}^2, N(K's), {\rm etc.})$
- use X_u thrust in the CM frame, for $B \to \pi \ell^+ \nu$ significance

Simultaneous (incl. & excl.) $|V_{ub}|$

[5, 10)

15, 20)

5 bins of q^2

for each N_{π}

[10, 15)

[15, 20)

[0, 5)

20, 26.4]

[5, 10)

Full Belle dataset

$$\mathcal{L}_{\text{int}} = 711 \text{ fb}^{-1}$$

Signal yield is measured in 5 bins of q^2

100

50

0

1.25

1.00

0.75

Data/MC

500

Simultaneous (incl. & excl.) $|V_{ub}|$

$$\begin{split} \left| V_{ub}^{\text{excl.}} \right| &= (3.78 \pm 0.23 \pm 0.16 \pm 0.14) \times 10^{-3} \\ \left| V_{ub}^{\text{incl.}} \right| &= (3.90 \pm 0.20 \pm 0.32 \pm 0.09) \times 10^{-3} \\ &\quad \pm \text{(stat) } \pm \text{(syst) } \pm \text{(theory)} \end{split}$$

$$\left| V_{ub}^{\text{excl.}} \right| / \left| V_{ub}^{\text{incl.}} \right| = 0.97 \pm 0.12$$

• $|V_{ub}|$ results from fits using LQCD and experimental constraints for the $B \to \pi^+ \ell \nu$ form-factor (left)

• $|V_{ub}|$ from fits using LQCD, but w/o form-factor constraints (right)

on the LFU test

LFU test with inclusive $B \to X\ell\nu$

- inclusive study complementary to exclusive studies
 - existing $R(D^{(*)})$ are all from exclusive analyses
- one of the unique and high-profile goals of Belle II
- last measured by LEP (!)
- As a first step towards measuring $R(X_{c,\tau/\ell})$, we measure $R(X_{e/\mu})$ at Belle II

•
$$R(X_{c,\tau/\ell})_{SM} = 0.223 \pm 0.004$$

Feytsis, Ligeti, Ruderman, PRD 92, 054018 (2015)

•
$$R(X_{e/\mu})_{SM} = 1.006 \pm 0.001$$

Rahimi, Vos, JHEP 11 (2022) 007

LFU test with inclusive $B \to X\ell\nu$

Reconstruct

$$\Upsilon(4S) \rightarrow B_{\text{tag}}^- \ell^+ X$$

$$\Upsilon(4S) \rightarrow \overline{B}_{\text{tag}}^0 \ell^+ X$$

- $p_{\ell}^* > 1.3 \text{ GeV}$
- Only basic quality cuts on tracks and calorimeter signals
- **Tight constraints on** tag quality
- hadrons faking leptons ("fakes")
- secondary leptons from $b \to c \to (\ell, s)$ cascades ("secondaries")
- $B \to X \tau \nu$

[53% (e) / 66% (μ) of selected B $\rightarrow X \ell \nu$ is retained]

See p.3 I for FEI as hadronic B-tagging tool.

slide taken from Belle II ICHEP2022 talk by H. Junkerkalefeld

 $\epsilon = \mathcal{O}(0.1\%)$

Precise knowledge of

 B_{tag} kinematics

LFU test with inclusive $B \to X\ell\nu$

Signal extraction by fitting p_ℓ^B

- Continuum bkgd. is Gaussianconstrained by off-resonance data
- Exploit $B_{\mathrm{tag}} \mathscr{C}$ charge correlation
 - ✓ For B_{tag}^+ , signal lepton is ℓ^-
 - ✓ For B_{tag}^0 , signal lepton is ℓ^- , except for $B\overline{B}$ mixing
 - ✓ Fake & secondary leptons are Gaussian-constrained by simulatenously fitting the p_{ℓ}^{B} in wrong-sign sample (*left*)

LFU test with inclusive $B \to X \ell \nu$

the most precise BF-based LFU test, and consistent with SM

$R(D^*)$ from Belle II

- First $R(D^*)$ result from Belle II
- Analysis features
 - Use hadronic B-tagging with FEI (slide 31)
 - leptonic τ decays, $\tau^+ \to \ell^+ \nu_\ell \bar{\nu}_\tau$
 - three D^* modes: $D^{*+} \rightarrow D^0 \pi^+$, $D^+ \pi^0$ and $D^{*0} \rightarrow D^0 \pi^0$

- extracted simultaneously
- by fitting 2D $(M_{\text{miss}}^2, E_{\text{ECL}})$

$$M_{\rm miss}^2 \equiv (p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell})^2$$

 $E_{\mathrm{ECL}} = \mathrm{extra\ energy\ (unmatched)\ in\ the}$ EM calorimeter

$R(D^*)$ from Belle II

- Signal $(B \to D^* \tau^+ \nu)$ & Normalization $(B \to D^* \ell^+ \nu)$
 - extracted simultaneously
 - by fitting 2D $(M_{\rm miss}^2, E_{\rm ECL})$

$$M_{\rm miss}^2 \equiv (p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell})^2$$

 $E_{
m ECL}={
m extra\ energy\ (unmatched)\ in\ the}$ EM calorimeter

$R(D^*)$ from Belle II

 $\mathcal{L}_{int} = 189 \text{ fb}^{-1}$

New for July, 2023

Preliminary

• Fit projections for the sub-mode $D^{*+} \rightarrow D^0 \pi^+$

 $M_{\rm miss}^2$ (peak-bin yield ~O(600))

 $E_{
m ECL}$ for entire $M_{
m miss}^2$ region

 $E_{\rm ECL}$ for signal-enhanced region $1.5 < M_{\rm miss}^2 < 6.0~{\rm GeV^2}$

$$R(D^*) = 0.267^{+0.041}_{-0.039}^{+0.021}_{-0.039}^{+0.023}$$

- Systematics
 - dominant sources: E_{ECL} PDF shape, MC statistics

New for July, 2023 **Preliminary**

$R(D^*)$ from Belle II

	5 ab^{-1}	50 ab^{-1}
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

Belle II expected precision, from The Belle II Physics Book, PTEP 2019 (2019) 123C01

new Belle II result is consistent with both the SM and the HFLAV average

$$R(D^*) = 0.267^{+0.041}_{-0.039}^{+0.021}_{-0.039}^{+0.023}$$

R(D) vs. $R(D^*)$, updated

Closing remarks

- \bigcirc Precise determination of the CKM matrix elements is crucial for testing the Standard Model. The magnitudes of these elements, in particular, V_{cb} and V_{ub} , are best measured by using B-meson semileptonic decays.
- Moreover, semileptonic B-meson decays provide a great testing ground for lepton universality of charged-current weak interaction processes.
- We reported recent unique and/or competitive results of inclusive and exclusive B-meson semileptonic decays, from the Belle II and Belle experiments.
- For some of these results, tag-side reconstruction of a companion B-meson decay has been exploited, which is now a unique feature of Belle II.
- For bottom line, using 189 fb^{-1} data sample, Belle II has made I) precise measurement of inclusive ratio, $R(X_{e/\mu})$ and 2) its first contribution to $R(D^*)$.

Thank you!

Appendices

$$\mathcal{L}_{\text{peak}} = 21.1 \text{ nb}^{-1} \text{s}^{-1}$$

$$e^- \xrightarrow{8 \text{ GeV}} (\star) \overset{3.5 \text{ GeV}}{\leftarrow} e^+$$

Belle Detector

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

SuperKEKB

Belle II

$$e^- \xrightarrow{7 \text{ GeV}} (\star) \xleftarrow{4 \text{ GeV}} e^+$$

$$\mathcal{L} = 6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$
$$\int^{\text{goal}} \mathcal{L} dt = 50 \text{ ab}^{-1}$$

Collected luminosity before LS1 (2019-2022)

Belle II was in operation through the Pandemic era, with modified working mode in accordance with the anti-pandemic policy.

peak luminosity world record $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

$e^+e^- \rightarrow \Upsilon(4S)$ as a *B*-factory

- $\mathcal{B}(\Upsilon(4S) \to B\overline{B}) > 96\%$, with $p_B^{CM} \sim 0.35$ GeV/c
- nothing else but $B\overline{B}$ in the final state \therefore if we know (E, \vec{p}) of one B, the other B is also constrained

Key variables of B decays

$$\Delta E = E_B^* - \sqrt{s/2}$$

$$M_{bc} = \sqrt{(\sqrt{s/2})^2 - \vec{p}_B^{*2}}$$

Full Event Interpretation (FEI)

- lacktriangle FEI algorithm to reconstruct $B_{
 m tag}$
 - uses \sim 200 BDT's to reconstruct $\mathcal{O}(10^4)$ different B decay chains
 - ullet assign signal probability of being correct $B_{
 m tag}$

Comput Softw Big Sci 3, 6 (2019)

arXiv:2008.060965

Appendix 1 Exclusive $B \rightarrow D^{(*)} \mathcal{C}^+ \nu$ for V_{cb}

$B \to D^* \ell^+ \nu$ shapes & $|V_{ch}|$

- Differential shapes (normalized) of $B \to D^* \ell^+ \nu$
 - as input to determine the non-perturbative form factor
 - once FF shape is known, it can be combined with L-QCD (or other methods) for the absolute normalization to determine $|V_{ch}|$

$$|V_{cb}| = \sqrt{\frac{\mathcal{B}(B \to D^* \ell \bar{\nu}_{\ell})}{\tau_B \Gamma(B \to D^* \ell \bar{\nu}_{\ell})}}$$

 $|V_{cb}| = \sqrt{\frac{\mathcal{B}(B \to D^* \ell \bar{\nu}_{\ell})}{\tau_B \Gamma(B \to D^* \ell \bar{\nu}_{\ell})}} \qquad \qquad \mathcal{B} - \text{externally determined}$ $\Gamma = \frac{1}{2} \frac{1}{$ \mathcal{B} – externally determined

- use hadronic *B*-tagging via FEI
- L-QCD at zero recoil (w = 1) is used for $|V_{ch}|$

$$w = v \cdot v'$$

$$= \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

$B o D^* \mathcal{E}^+ \nu$ shapes & $|V_{cb}|$

-1:00 -0.75 -0.50 -0.25 0.00 0.25 0.50 Youngjoon Kwon,""Semileptonic B decays at Belle II and Belle"

- Full correlations b/w the projections are also determined
- Bkgd. subtraction, with binned likelihood fits to $M_{
 m miss}^2$

background subtraction, with binned likelihood fits to $M_{\rm miss}^2$

$B \to D^* \mathscr{C}^+ \nu$ shapes & $|V_{cb}|$

$\Delta A_{\rm FB} = A_{\rm FB}^{\mu} - A_{\rm FB}^{e}$

	$\Delta A_{ m FB}$
$\bar{B}^0 \to D^{*+} \ell \bar{\nu}_{\ell}$	$0.062 \pm 0.044 \pm 0.011$
$B^- \to D^{*0} \ell \bar{\nu}_{\ell}$	$-0.003 \pm 0.033 \pm 0.009$
$B \to D^* \ell \bar{\nu}_{\ell}$	$0.022 \pm 0.026 \pm 0.007$

$$\Delta F_L = F_L^{\mu} - F_L^e$$

	$\Delta F_L^{D^*}$
$\bar{B}^0 \to D^{*+} \ell \bar{\nu}_\ell$	$0.032 \pm 0.033 \pm 0.010$
$B^- \to D^{*0} \ell \bar{\nu}_{\ell}$	$0.025 \pm 0.035 \pm 0.010$
$B \to D^* \ell \bar{\nu}_{\ell}$	$0.034 \pm 0.024 \pm 0.007$

$$R_{e/\mu} = \frac{\mathcal{B}(\overline{B} \to D^* e \bar{\nu}_e)}{\mathcal{B}(\overline{B} \to D^* \mu \bar{\nu}_\mu)} = 0.990 \pm 0.021 \pm 0.023$$

$B \to D^* \mathcal{C}^+ \nu$ shapes & $|V_{cb}|$ from Belle II

- The yield in 10 (8) bin of w and the three cosine angles is extracted by fitting $\cos\theta_{BY}$ and ΔM for D^*
- Bin-to-bin migration is corrected with SVD unfolding
- main challenges: background modeling, slow-pion tracking, and stat. correlations b/w bins

Belle II

$B \to D^* \mathcal{C}^+ \nu$ shapes & $|V_{cb}|$ from Belle II

