

Recent Belle II results on time-dependent CP violation and charm physics

Jake Bennett
University of Mississippi
FPCP 2023 - Lyon, France

SuperKEKB

High-luminosity Super B factory

 $u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}, \ell^+\ell^- \leftarrow e^+e^- \rightarrow \Upsilon(\mathsf{nS}) \rightarrow B^{(*)}\bar{B}^{(*)}$

Identifying new CP-violating phases in the quark sector

High sensitivity to New Physics

$$\mathcal{P}(\Delta t,q) = \frac{e^{-|\Delta t|/\tau_d}}{4\tau_d} \Big\{ 1 + q \Big[A_{CP} \cos(\Delta m_d \Delta t) + S_{CP} \sin(\Delta m_d \Delta t) \Big] \Big\}$$

$$A_{CP} \approx 0 \text{ in the SM} \qquad S_{CP} \approx \sin 2\beta \text{ in the SM}$$

- Some experimentally challenging modes:
 - Fully hadronic final state with neutrals (Unique to Belle II)
 - Low purity → dedicated continuum suppression algorithms

$\sin 2\beta/\phi_1$

Belle II

The bread-and-butter for B factories

- SM measurement, but important analysis to refine all our tools for future measurement sensitive to NP (e.g. $B^0 o K_S^0 K_S^0 K_S^0$ see following): we are ready!
- Essential to validate Δ t resolution (~1 ps) & flavor tagger (ϵ_{tag} ~ 30%) performance for TDCPV analyses

 $\tau_{B^0} = 1.499 \pm 0.013 \pm 0.008 \text{ ps}$ w.a. $1.519 \pm 0.004 \text{ ps}$ $\Delta m_d = 0.516 \pm 0.008 \pm 0.005 \text{ ps}^{-1}$ w.a. $0.5065 \pm 0.0019 \text{ ps}^{-1}$

$$S_{CP} = 0.720 \pm 0.062 (\mathrm{stat}) \pm 0.016 (\mathrm{syst})$$
 w.a. 0.698 ± 0.017 $A_{CP} = 0.094 \pm 0.044 (\mathrm{stat}) + 0.042 (\mathrm{syst}) + 0.042 (\mathrm{syst})$ w.a. -0.005 ± 0.015

Recent results

in time-dependent CP violation

$B^0 o \phi K_S^0$ on par with best measurements

- Clean experimental signature
- Calibration of resolution and tagging with $B \to D^*\pi$
- Validated with $B^+ \to \phi K^+$ (null asymmetry test)
- 4D fit: $(M_{bc}, O'_{CS}, \cos(\theta), \Delta t)$

$$A_{CP} = 0.31 \pm 0.20^{+0.05}_{-0.06}$$
$$S_{CP} = 0.54 \pm 0.26^{+0.06}_{-0.08}$$

$$A_{CP}^{w.a.} = -0.01 \pm 0.14$$

$$S_{CP}^{w.a.} = 0.59 \pm 0.14$$

Recent results

in time-dependent CP violation

$$B^0 o K_S^0 K_S^0 K_S^0$$
 on par with best measurements

- Complex vertexing (only displaced tracks!)
- 3D signal fit: (M_{bc}, M_B, O'_{CS}) simultaneous fit with
 - $B^+ \to K_S^0 K_S^0 K^+$ (background, Δt calibration)
 - time-ind $B^0 \to K^0_{\varsigma} K^0_{\varsigma} K^0_{\varsigma}$ for A_{CP} constraint
- Δt fit to extract A_{CP} and S_{CP}

 $(K_{\rm S}^0)$ flight distance ~10 cm)

$$A_{CP} = 0.07^{+0.15}_{-0.20} \pm 0.02$$

$$A_{CP} = 0.07^{+0.15}_{-0.20} \pm 0.02$$
$$S_{CP} = -1.37^{+0.35}_{-0.45} \pm 0.03$$

$$A_{CP}^{w.a.} = 0.15 \pm 0.12$$

$$S_{CP}^{w.a.} = -0.83 \pm 0.17$$

Recent results

More details by S. Raiz next session

in time-dependent CP violation

$$B^0 o K_S^0 \pi^0$$
 on par with best measurements

$$A_{CP} = 0.04 \pm 0.15 \pm 0.05$$

$$S_{CP} = 0.75^{+0.20}_{-0.23} \pm 0.04$$

$$A_{CP}^{w.a.} = 0.00 \pm 0.13$$

$$S_{CP}^{w.a.} = 0.58 \pm 0.17$$

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \cdot \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \cdot \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \cdot \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \approx 0$$

• Combine $B^0 \to K_S^0 \pi^0$ with time-integrated analysis:

$$A_{CP}^{K_S^0 \pi^0} = -0.01 \pm 0.12 \pm 0.05$$
 $w \cdot a \cdot = -0.0 \pm 0.13$

• Combining all $B \to K\pi$ final states at Belle II:

$$I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$$
 $w \cdot a \cdot = 0.13 \pm 0.11$

Precise charm lifetime measurements

Leveraging the excellent detector performance

- Lifetimes from distance between production and decay vertices
 - Decay times become negative due to resolution (tool to understand resolution)
 - High precision measurements probe beam spot and alignment calibration

 \widetilde{V}_{D^*} production vertex

$$t=rac{m_D}{p}igg(rac{
ightarrow}{d}.\,\hat{p}igg)$$

- Belle II can make precision, absolute lifetime measurements
 - Large samples of exclusive charm decays
 without lifetime-biasing triggers and selections
 - Precise calibration of final state particle momenta
 - Excellent vertex detector alignment
 - Very good vertex resolution, small beam size

Charmed baryon lifetimes at Belle II

Confirming recent upheaval

$$\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$$

• World's best measurement of the Λ_c^+ lifetime ———

Confirmed LHCb measurement for Ω_c^0 — lifetime that challenged earlier determinations and HQE expectations

 More confirmation of the excellent performance and alignment of the Belle II vertex detector

Another world-leading lifetime measurement

$D_{\scriptscriptstyle S}$ lifetime measurement

- Measured $\tau_{D_s^+} = (498.7 \pm 1.7^{+1.1}_{-0.8})$ fs using $116 \times 10^3 \, D_s^+ \to \pi^+ [\phi \to K^+ K^-]$ decays
 - Consistent with by about twice as precise as current world-average (504 ± 4) fs
 - Also consistent with theory predictions ($au_{D_{
 m c}^+} \sim au_{D^0}$)

Charm flavor tagger (CFT)

Novel method to identify production flavor of neutral charmed mesons

- CPV in charm: only up-type quark forming a meson mixing system
- CFT exploits correlation between the flavor of a reconstructed neutral D meson and the electric charges of the rest of the event

- Tagging decision (q) chosen to be +1 (-1) for D^0 (\bar{D}^0), dilution factor (r) close to one for perfect prediction, zero for random guess
- Effective tagging efficiency $e_{\rm tag}^{\rm eff}$ = (47.91 ± 0.07(stat) ± 0.51(syst)) % , independent of decay mode
- Approximately doubles effective size of many CPV, mixing measurements
- Basic principles can be used at other experiments

Summary

- Upgraded SuperKEKB accelerator, improved Belle II detector, refined analysis techniques
- The physics program of Belle II has outstanding potential for discovering BSM physics over the next decade
 - Broad program of fundamental weak interaction measurements
 - New Physics discoveries possible in searches unique to Belle II
 - New tools and techniques enhance Belle II physics capabilities
- With half the dataset of previous B-factories, Belle II is already producing competitive results
- Only 0.5% of target integrated luminosity collected so far much more to come!

The road to 50 ab⁻¹

Until 2035

PXD arrives at

You are here:

$$\mathcal{L}_{int} = 424 \text{ fb}^{-1}$$
 (~half the Belle dataset)

$$\mathcal{L}_{\text{peak}} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \text{ (world record!)} ~5x \,\mathcal{L}(\text{PEP-II})$$

- Long Shutdown 1 (LS1)
 - Ongoing since summer 2022
 - Maintenance and upgrade of machine and detector
 - Data taking will resume in early 2024
- Long Shutdown 2 (LS2)
 - To be confirmed
 - Upgrade of the SuperKEKB interaction region to enable $\mathcal{L}_{peak} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Key challenge to increasing beam currents and squeezing beam-size at interaction point: beam-beam blowup