Future of Belle II

LYON, 29 May – 2 June 2023

Conference on Flavor Physics and CP Violation

Jerome Baudot, on behalf of the Belle II collaboration

- General concepts for high luminosity super B factory
- On-going activities at SuperKEKB & Belle II (LS1)
- Upgrade plans on the mid-term (LS2)
- Going chiral?

b,c,τ super-factory: SuperKEKB + Belle II

- Belle II physics program at $\sqrt{s} = M_{Y(4S)} \& M_{Y(1S) \to Y(6S)}$ from 1 to 50 ab⁻¹
 - ⇒Initial physics book PTEP 12 (2019) 123C01
 - ⇒Updated Snowmass white paper <u>arXiv 2207.06307</u>

Built up on KEKB + Belle success

- New machine: SuperKEKB
 - $\mathcal{L}_{peak} \sim \text{multi } 10^{35} \text{ cm}^{-2}.\text{s}^{-1} \text{ range}$

- New detector: Belle II
 - Exploit assets of e+e- collisionshermiticity, Emiss, neutrals
 - Multi-purpose physicsprecision (vtx, trck), hadron+lepton PID

Belle II physics currently delivering...

- 427.8 fb⁻¹ accumulated [including 42/19 fb⁻¹ below/above M_{Y(4S)}]
- World record peak lumi 4.7x10³⁴ cm⁻².s⁻¹

Already presented @ FPCP:

- New CPV measurements at e+e- experiments, J. Skorupa
- Status and prospects for rare B decays at Belle/Belle II, G. De Marino
- New b->u and b->c semi-leptonic results at e+e- experiments, S. Granderath
- New non-leptonic hadron decay results at e+e- experiments, A. Di Canto
- Recent Belle II results on time-dependent CP violation and charm physics, J. Bennett
- Recent Belle II results on the CKM parameters | V_cb | and | V_ub |, P. Horak
- Recent Belle II results on radiative and electroweak penguin decays, J. Cerasoli
- Recent Belle II results on hadronic B decays, S. Raiz
- Recent Belle II results on semitauonic decays and tests of lepton-flavor universality, P. Lewis
- Recent tau and dark-sector results at Belle II, G. Raeuber
- Recent quarkonium results at Belle II, Alessandro Boschetti

To come

• Dark sector at flavour experiments, Torben Ferber

Belle II physics currently delivering...

- 427.8 fb⁻¹ accumulated [including 42/19 fb⁻¹ below/above M_{Y(4S)}]
- World record peak lumi 4.7x10³⁴ cm⁻².s⁻¹

Already presented @ FPCP:

- New CPV measurements at e+e- experiments, J. Skorupa
- Status and prospects for rare B decays at Belle/Belle II, G. De Marino
- New b->u and b->c semi-leptonic results at e+e- experiments, S. Granderath
- New non-leptonic hadron decay results at a few
- Recent Belle II results and charm physics, J. Beni
- Recent Belle II i Horak
- Recent Belle II re Cerasoli
- Recent Belle II re
- Recent Belle II re universality, P. Le
- Recent tau and
- Recent quarkonic Alessandro Bosch

what's next? guin decays, J.

lepton-flavor

riments, A. Di Canto

and |V_ub|, P.

To come

Dark sector at flavour experiments, Torben Ferber

SuperKEKB collider

Recipe for high luminosity

• High background rate

→ Faster detectors

low emittance

e-gun

Belle II detector

Upgraded or new / Belle

Physics prospects with luminosity increase

After few years at cutting-edge luminosity, better grasp on how to...

- get the luminosity higher
 - SuperKEKB improvements in LS1
 - Mitigate various background sources
 - SuperKEKB upgrade in LS2
 - Large impact on Interaction Region (IR)
- cope with higher background
- get more physics per ab-1
 - Hierarchical Belle II upgrades
 - Short-term = LS1
 - Mid-term = LS2

- ⇒ Snowmass papers
- Long-term = beyond LS2
- <u>arXiv 2203.11349</u>

Use polarization

arxiv:2205.12847

• Experience with SuperKEK first operation years => confidence on reachable \mathcal{L}_{peak} with present machine lattice

• Continuous effort to understand background (arXiv 2203.05731) => MC/data ratio now o(1)

Predictions example: TOP (each subsystem affected differently)

Operational conditions

- Complex & adaptable collimator system
- Injection background from new bunch
- Sudden beam loss events
- => continuous improvement process

Predictions example: TOP (each subsystem affected differently)

Present conclusion

- From LS1 to LS2: $1x10^{35} < L_{peak} < 2.8x10^{35} \text{ cm}^{-2}.\text{s}^{-1}$
 - Beam background high but tolerable without performance loss
- Beyond LS2: up to 6x10³⁵ cm⁻².s⁻¹
 - -Systems getting close or reaching current limits: Main tracker (CDC), central PID (TOP), Silicon tracker (SVD)

LS1 on-going work: SuperKEKB

Countermeasures against sudden beam loss

- Additional real-time monitoring
- Faster abort system

Additional shielding

- Against neutrons
 - around final focusing magnets (QCS)
 - Around end-caps

Collimators

- Non-linear types → background mitigation
- Harder head material → better resilience

Assembly test with real designs Stield mockup (3.0 printing)

Shielding on QCS bellow

Carbon collimator head

Injection

- New beam-pipe + faster kicker magnets
 + new quadrupole magnet
- → Higher efficiency & mitigated background

RF cavity replacement

→ More stable operation and larger beam currents

Larger pipe injection

LS1 work: Belle II

Completion of pixel layers

- Entirely new 2 complete layers of DEPFET sensors
 - Previously 2nd layer was 17% complete

<u>Time of Propagation robustness</u>

- Replacement to Atomic Layer Deposited (ALD) Micro-Channel Plate PMT
- \rightarrow Increased lifespan & hit rate limit (3 \rightarrow 5 MHz/cm²)

- New PCIe40 boards used by all subsystems
 - But PXD (specific data path)

- Improved gas distribution & monitoring syste
 - Better gain stability

S Diameter

SuperKEKB upgrade for LS2

 Goals = allows higher luminosity reaching lower B* and higher current while limiting beam-beam effects & preserving beam lifetime <= Guidance from International Task Force connecting cross-continental/machine expertise

- Currently **exploring various options** for interaction region
 - Position of final focusing magnets
 (QC) closer to IP
 - New QC magnets
 - Additional solenoid for lower emittance while compensating Belle II field
 - => Need feed-back from 2024 beam operation

Belle II envelope in interaction region will likely change Schedule for LS2 is indicative

Belle II plans at timeline ≥ LS2

EOI	Upgrade ideas scope and technology	Time scale	
DMAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2	Na C:
SOI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI	LS2	New Si vertex & tracker
Thin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2	A HUCKEI
CDC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2	
ТОР	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later	
ECL	Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.	> LS2	
KLM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later	
Trigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later	
STOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2	Long term
TPC	TPC option under study for longer term upgrade	> LS2	options

New vertex detector preparation (LS2 timeline)

Among most advanced upgrade Belle II project

Concept

- 5 layers with high space-time granularity
 & low material budget
 - Tracking robustness / background rate: occupancy < O(10-4)
 - Higher vertexing precision / current VXD
- Lighter services & "easy" geometry
 - adaptable to potential change of interaction region

Technical choices

- Pixel sensor = MAPS (main option), SOI (alternative)
 - 30-40 µm pitch with 100 ns integration time
- All-silicon ladders (PXD-inspired) for inner layers (0.1% X₀)
- "Standard" supported ladders (ALICE-ITS2 inspired) for outer layers (0.5-0.8 % X₀)

Diam. 28 cm length 70 cm $=> 1 \text{ m}^2$

Physics benchmarking

• Soft π reconstruction in $B^0 \to D^{*-}\mu^+ v_\mu$ $\sqsubseteq \overline{D^0}\pi^-$

Going chiral?

Chiral Belle II: potential physics reach

70% polarized electrons

Electroweak vector neutral current

- Tensions in $A_{FB}^{0,b}(LEP) / A_{LR}(SLC)$
- Left-right asymmetries with 5 fermions: b, c, e, μ, τ

Dark sector

• Sensitivity to light $Z_{
m dark}$ through $\sin^2 heta_W$

Tau physics

- Unique place for g-2
 - Sensitivity $\sim O(10^{-5})$ with 50 ab⁻¹
- Additional background suppression in LFV channels
 - Using helicity distributions
 - $\tau \rightarrow l\gamma$

Chiral Belle II: required machine development

Installation during Long Shutdown 2 (~2027)

Low emittance source

- Laser on GaAs cathodes under development
- Need transverse polarization for injection in HER

Spin rotators

- Get longitudinal polarization before IP
- Option1: additional spin-rotator magnets
 repositioning of some magnets
- Option 2: replace two magnets with new combined-magnets dipole + rotator

Compton polarimeter

- Follows HERA experience
- Monitor polarization at 0.5% absolute precision

The future is not for us to predict but to prepare...

- ⇒ The Belle II physics book PTEP 12 (2019) 123C01
- ⇒ Expression of Intent for upgrades (Feb.2021 private)
- ⇒ Snowmass contributions, physics: <u>arXiv 2207.06307</u>

upgrades: <u>arXiv 2203.11349</u>, background: <u>arXiv 2203.05731</u> polarisation: <u>arXiv 2205.12847</u>

⇒ CDR for mid-term upgrade in the writing

SUPPLEMENTARY SLIDES

Beam background scenarii for luminosity 6x10³⁵ cm⁻².s⁻¹

Work in progress for CDR

Impact on performance & physics

=> Snowmass Belle II: <u>arXiv 2203.11349</u>

	- X	DC	А	G	ГW
Topic		\Box	P	Й	\mathbf{X}
Low momentum track finding	✓	✓			
Track p, M resolution		\checkmark			
IP/Vertex resolution	\checkmark				
Hadron ID		\checkmark	\checkmark		
$K_{ m L}^0~{ m ID}$				\checkmark	\checkmark
Lepton ID		\checkmark		\checkmark	\checkmark
π^0,γ				\checkmark	
Trigger	\checkmark	\checkmark			

Topic	VXD	CDC (incl. Trigger)	PID	PID(\Omega coverage)	ECL	KLM
$\mathcal{B}(B \to \tau \nu, B \to K^{(*)} \nu \bar{\nu})$	✓			√	✓	√
$\mathcal{B}(B o X_u\ell u)$	\checkmark		\checkmark	\checkmark		\checkmark
R , Polarisation $(B \to D^{(*)} \tau \nu)$	\checkmark				\checkmark	
FEI	\checkmark	\checkmark		\checkmark		
$S_{\mathrm{CP}}, C_{\mathrm{CP}}(B o \pi^0 \pi^0, K_S^0 \pi^0)$	\checkmark	\checkmark			\checkmark	
$S_{\mathrm{CP}}, C_{\mathrm{CP}}(B o ho \gamma)$		\checkmark	\checkmark		\checkmark	
$S_{\mathrm{CP}}, C_{\mathrm{CP}}(B o J/\psi K_{\mathrm{S}}^0, \eta' K_{\mathrm{S}}^0)$	\checkmark	\checkmark				
Flavour tagger	\checkmark		\checkmark			
$ au ext{ LFV}$		\checkmark			\checkmark	
Dark sector searches		✓			\checkmark	\checkmark

Beam induced backgrounds

Single beam effects

Touschek ← intra-beam scattering

-rate
$$\propto \frac{I_{bunch}^2 N_{bunch}}{(\sigma_x \sigma_y) E_{beam}^3} = \frac{I_{beam}^2}{(\sigma_x \sigma_y) E_{beam}^3 N_{bunch}}$$

- Beam gas ← vacuum residues
 - -rate $\propto I_{\text{bunch}} \times N_{\text{bunch}} \times P(I)$
 - Dynamic pressure $P(I) = (p_0 + p_1 I_{beam})$
- Synchrotron radiation ← magnet bending
 - -rate $\propto I_{\text{beam}}$
- Beam-beam effects (QED)
 - rate ∝ Luminosity

Radiative Bhabha scattering

2-photon interaction

Belle II, another view

Vertex detector: VXD (PXD+SVD)

Rationale

- Be prepared for IR redesign (higher Background conditions)
- Improve performance / IP resolution, low p_T tracks
- Be prepared to cover inner CDC (radii 135-240 mm)
- Triggering: possible contribution to L1
- Target Medium-term

Requirements

5-6 layers over radii	14-135 mm			
Spatial resolution	< 15 µm			
Total material budget	< (2x0.2% + 4x0.7%) X ₀			
Hit rate	120 ≥ 1 MHz/cm ²			
Total lonizing Dose (inner)	100 kGy / year			
NIEL fluence (inner)	5x10 ¹³ n _{eq} /cm ²			

⇒ Higher granularity in time and/or space / current VXD

Various proposals

Thin and fine-pitch DSSD

- Sensor 140 µm thin & z-pitch < 80 µm
- New ASIC for low noise

Upgraded DEPFET

 Higher radiation tolerance through higher gain

- Faster read-out (few µs) with re-orientation and new ASICs

SOI pixels

- Lapis 200 nm process
- Dual Time pixel sensor (DuTiP)
- pitch 45 µm 2x60 ns integration

CMOS-MAPS

- Tower 180 nm process
- Extension of TJ-MONOPIX2 → OBELIX sensor
- Pitch <40 µm with 100 ns integration
- Fully pixelated VXD concept = VTX
 with all-Si modules or ALICE-ITS-like ladders

Main tracker: CDC

Short-/Medium-term

- Robustness against radiation-damage
- Mitigate cross-talk between read-out channels

Replacement of read-out board

- New ASIC
 - all-in-one ASD+ADC, lower cross-talk (100 \square 10 mV/7pC)
- Components with higher radiation tolerance
 - Optical transceiver (sensitive to γ and neutrons)
 - FPGA (sensitive to SEU)

- Tests in 2022
- Mass production 2023

Current read-out board

Long-term studies

• Sustaining higher rates & backgrounds

Exploration

- Extended VTX
- TPC tracker with pixel read-out Gridpix-like 200² µm²

Particle Identification: TOP & ARICH

Time Of Propagation (TOP)

- Maintain efficiency against ever higher background
 - Needed already at short/medium-term
- Photon detection devices
 - 2022: move to Atomic Layer Deposited ALD-MCP-PMT
 - 2026: move to life extended ALD-MCP-PMT possibly to SiPM

- Read-out electronics to accommodate SiPM
 - Better compactness using SiPM dedicated ASICs
 - Allows extra cooling required by SiPM

Aerogel RICH

- target long term
 - Current Hybrid-APD not adapted beyond 8x10³⁵ cm⁻².s⁻¹
- 1st option: SiPM
 - On-going evaluation of various device
 - Single photon detection, Dark count rate,
 Neutron sensitivity (5x10¹² n_{eq}/cm²), Cooling required
- 2nd option: Large Area Picosecond photodetectors
- Read-out
 - Upgrade of current ASIC
 - Or new ASIC

STOPGAP proposal

- target long term
- Fill-in gaps between TOP quartz bar
- CMOS-MAPS with 50 ps timing

Calorimetry: ECL

Rationale

- Target long-term
- Reduce pile-up from beam-induced background

• Sensitivity to photon incident angle

Read-out of current Csi(TI)

From PiN diodes to APD

Faster cristals

- Full replacement: Csi(TI) → pure Csi
 From 1 µs to 30 ns light decay tile
- Photon detection: WLS + APD

New preshower

- BGO/LYSO + 1mm² Si pixel
 - Angle = 0.08 rad expected@ normal incidence

Klong & Muon identification: KLM

- Target medium to long term
- Complete replacement of RPCs with Scintillators
 - Rationale: increased rate & robustness of read-out chain
 - New system = scint. bars + wave-length shifter fibers + SiPM
 - Already used in first layer & end-cap
 - More compact read-out
 - Allowing waveform sampling (time resol.) & improved data push to trigger

Investigating TOF-like performance

- Rationale: K₁ energy & background neutron rejection
- Required time resolution ~30 ps
- R&D on-going with large MPPC + new pre-amp

Trigger

30 kHz

delay ~5µs

Rationale

- Keep high-efficiency on hadronic events
- Improve efficiency on low-multiplicity events (τ , dark sector)
- Continuous improvements

Firmware

CDC

ECL

TOP

KLM

Hardware

- Deployment of most recent UT4 boards
 - Xilinx Ultrascale with 200k gates, 25 Gbps, DDR4
 - Target 2026
- New UT5
 - Xilinx Ultrascale+ with 8000k gates, 32 Gbps, UltraRAM
 - Lower #boards needed
 - **-** 2024-32

Component	Improvement	Time	$\#\mathrm{UT}$
CDC cluster finder	beamBG rejection	2026	10
CDC 2Dtrack finder	increase occupancy limit	2022	4
CDC 3Dtrack finder	enlarge θ angle acceptance	2022	4
CDC 3Dtrack fitter (1)	beamBG rejection	2025	4
CDC 3Dtrack fitter (2)	beamBG rejection	2025	4
Displaced vertex finder	LLP search	2025	1
ECL waveform fitter	resolution	2026	-
ECL cluster finder	beamBG rejection	2026	1
KLM track finder	beamBG rejection	2024	_
VXD trigger	BG rejection	2032	-
GRL event identification	signal efficiency	2025	1
GDL injection veto	DAQ efficiency	2024	-

Individual

reconstruction

(30 UT boards)

tracks

photons

evt time

muons

Logic

Global I