

Hadronic B decays

 $b \rightarrow c$, u trees and $b \rightarrow d$, s penguins.

Probe SM dynamics in all three CKM angles

- γ with theoretically clean modes $B \to DK$,
- α with $B \to \rho \rho$, $B \to \rho \pi$, $B \to \pi \pi$ isospin analyses,
- β with $B^0 \to J/\psi K_S^0$, $B^0 \to \eta' K_S^0$, $B^0 \to \phi K_S^0$ and by testing isospin sum rules, chiral structure, ...

Today:

 γ determination using two different methods, $B o \rho \rho$ and $B o \pi \pi$ towards α , $K\pi$ isospin sum rule, observation of new $B o D^{(*)}K^-K_S^0$ decays.

The Belle II detector

- ► SuperKEKB: 7-on-4 GeV e^-e^+ collider at 10.58 GeV;
- Aim at 700 $B\bar{B}$ pairs/second in low-bkg environment;
- ► 424 fb⁻¹ (400 x10⁶ $B\bar{B}$ pairs) of data collected;
- Record peak luminosity:
 4.7x10³⁴ cm⁻² s⁻¹

Unique reach on final states with multiple neutrinos and π^0 /photons.

Analysis workflow

~1/5 of hadronic events from e^+e^- are $B\bar{B}$.

Typical B hadronic event: 10 tracks/clusters — easy to trigger on unbiasing variables (e.g. number of tracks) isotropically distributed in space.

Main backgrounds: $e^+e^- \rightarrow q\overline{q}$ (collimated jets, very different event shape), other misidentified B events.

Reconstruction

- combine final state particles $(K, \pi, ...)$ in kinematic fits to form the B decay

Selection

- optimize event-shape multivariate classifier (CS) and particle ID criteria

Fit

- extract models from simulation (calibrate on data), fit in to data and evaluate physics quantities

Systematic uncertainties

- with control modes and simulations

Separate signal from $q\bar{q}$ and misidentified B's.

Separate *B*-events from $q\bar{q}$.

Measurement of γ

γ from $B \to DK$ decays

 γ : phase between $b \to u$ and $b \to c$ transitions. Accessible via tree-level decays: no direct new physics \to strong constraints on SM.

Current WA dominated by LHCb:

$$\gamma$$
[°] = 65.9 + 3.3 HFLAV

Various approaches — different D final states:

- Self-congjugate final states $D \to K_S^0 h^+ h^-$ Belle + Belle II $\gamma = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ$ https://link.springer.com/article/10.1007/JHEP02(2022)063
- Cabibbo-suppressed decays $D o K_S^0 K^\pm \pi^\mp$
- -CP eigenstates $D \to K^+K^-, K_S^0\pi^0$

Interference between two decays to same final state gives access to phase:

γ using Cabibbo-suppressed decays

$$B^{\pm} \to DK^{\pm}, D\pi^{\pm} \quad (D \to K_S^0 K^{\pm} \pi^{\mp})$$

SS: same-sign, OS: opposite sign.

2D fit (ΔE , CS') of 8 categories:

 $(+,-) \times (SS,OS) \times (DK,D\pi)$ in full D phase space and in interference-enhanced $D \to K^*K$ region.

Combination of \mathcal{R} and \mathcal{A} constraints γ .

Full D phase space $\mathcal{A}_{SS}^{DK} = -0.089 \pm 0.091 \pm 0.011$ $\mathcal{A}_{OS}^{DK} = +0.109 \pm 0.133 \pm 0.013$ $\mathcal{A}_{SS}^{D\pi} = +0.018 \pm 0.026 \pm 0.009$ $\mathcal{A}_{OS}^{D\pi} = -0.028 \pm 0.031 \pm 0.009$ $\mathcal{R}_{SS}^{DK/D\pi} = 0.122 \pm 0.012 \pm 0.004$ $\mathcal{R}_{OS}^{DK/D\pi} = 0.093 \pm 0.013 \pm 0.003$ $\mathcal{R}_{SS/OS}^{D\pi} = 1.428 \pm 0.057 \pm 0.002$

Results consistent with LHCb, but not competitive.

Contribute to constrain γ in combination with other measurements.

γ using CP eigenstates

 $B^{\pm} \to D_{CP^{\pm}}, \ D \to K^+K^- \ (CP \ {\rm even}) \ D \to K_S^0\pi^0 \ (CP \ {\rm odd})$ 2D fit ($\Delta E, CS'$) of 6 categories:

 $(DK, D\pi) \times (K^+K^-, K_S^0\pi^0, K^+\pi^-)$

Only accessible to Belle/Belle II

Combination of ${\mathscr R}$ and ${\mathscr A}$ gives access to γ .

$$\mathcal{R}_{CP^+} = 1.164 \pm 0.081 \pm 0.036$$
 $\mathcal{R}_{CP^-} = 1.151 \pm 0.074 \pm 0.019$
 $\mathcal{A}_{CP^+} = +0.125 \pm 0.058 \pm 0.014$
 $\mathcal{A}_{CP^-} = -0.167 \pm 0.057 \pm 0.006$

Evidence for difference in $\mathcal{A}_{CP^{\pm}}$.

189 fb-1 Belle I

Results consistent with BaBar and LHCb, but not competitive. Contribute to constrain γ in combination with other measurements.

Towards CKM angle α

Towards CKM angle α

 $\alpha = arg \left[-V_{td}V_{tb}^*/V_{ud}V_{ub}^* \right] \mbox{ less precisely known angle,}$ may limit the global testing power of CKM fits.

$$\alpha$$
[°] = 85.2 + 4.8
 - 4.3
 HFLAV

Determined using $B \to \rho \rho$ and $B \to \pi \pi$ isospin analyses: combine information from BF and A_{CP} to reduce impact of hadronic uncertainties — non-perturbative QCD.

Unique Belle II capability to study in consistent way all $B \to \rho \rho$ and $B \to \pi \pi$ channels.

 $B \to \rho \rho$ measurements require angular analysis:

- Winter 2022 $B^+ \to \rho^+ \rho^0$ result: arxiv.org/abs/2206.12362;
- result for $B^0 \to \rho^+ \rho^-$.

$$\mathcal{B} = (26.7 \pm 2.8 \pm 2.8) \times 10^{-6}$$

 $f_L = 0.956 \pm 0.035 \pm 0.033$

arxiv.org/abs/2208.03554

$B \to \pi\pi$ results

First $B^0 \to \pi^0 \pi^0$ measurement at Belle II:

- rare, small *BF* (10⁻⁶),
- only photons in the final state dominated by signal-like background,
- large theoretical uncertainties.

Achieved Belle BF precision using only 1/3 of data.

$$\mathcal{B}(\pi^0 \pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$$
$$\mathcal{A}(\pi^0 \pi^0) = 0.14 \pm 0.46 \pm 0.07$$

Preliminary Belle II results on par with best performance from Belle/Babar.

Isospin sum rule

Isospin sum rule

Stringent null test of SM, sensitive to presence of non-SM dynamics. Inconsistency between current measurements: " $K\pi$ puzzle" (anomalously enhanced amplitudes or new physics):

$$I_{K\pi} = \mathcal{A}_{\text{CP}}^{K^{+}\pi^{-}} + \mathcal{A}_{\text{CP}}^{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{\text{CP}}^{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{\text{CP}}^{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \approx 0$$

Gronau (Phys. Lett. B 627 (2005) no.1, 82-88)

Belle II: measure all final states, with unique access to $B^0 o K^0 \pi^0$ (major limitation in $I_{K\pi}$).

Similar strategy for all the modes:

- common selection for final-state particles,
- continuum suppression,
- 2D fit ($\Delta E, CS'$) for branching fractions and time-integrated \mathscr{A}_{CP} .

Isospin sum rule results

Isospin sum rule results

$$B^0 \to K^+\pi^-$$

$$\mathcal{B}(K^{+}\pi^{-}) = (20.67 \pm 0.37 \pm 0.62) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) = -0.072 \pm 0.019 \pm 0.007$$

$$B^+ \to K_S^0 \pi^+$$

$$\mathcal{B}(K_S^0\pi^+) = (24.40 \pm 0.71 \pm 0.86) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K_S^0\pi^+) = +0.046 \pm 0.029 \pm 0.007$$

$$B^+ \to K^+ \pi^0$$

$$\mathcal{B}(K^+\pi^0) = (13.93 \pm 0.38 \pm 0.84) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K^+\pi^0) = +0.013 \pm 0.027 \pm 0.005$$

$$B^0 \to K_S^0 \pi^0$$

$$\mathcal{B}(K_S^0 \pi^0) = (10.16 \pm 0.65 \pm 0.67) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K_S^0 \pi^0) = -0.006 \pm 0.15 \pm 0.05$$

 \mathscr{B} and $\mathscr{A}_{\mathit{CP}}$ agree and are competitive with world's best, \mathscr{B} systematically limited.

 $B^0 \to K_S^0 \pi^0$ result combined with time-dependent analysis (arxiv.org/abs/2206.07453), obtaining world's best:

$$A_{CP}(K_S^0 \pi^0) = -0.10 \pm 0.12 \pm 0.05$$

by Jake Bennett

$$I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$$
 (world average 0.13 ± 0.11)

⇒ Competitive precision to world's best already with this data size.

$$B \to D^{(*)} K^- K_S^0$$
 decays

 $B \to D^{(*)}KK$ makes up a few % of hadronic decay, but only a small fraction is known.

Improve simulation and tagging techniques: need to know well *BF*'s and possible intermediate states.

Fit ΔE , subtract background, and look at $m(K^-K_S^0)$ and Dalitz distributions.

Structures observed in low mass region.

$$\mathcal{B}(B^{-} \to D^{0}K^{-}K_{S}^{0}) = (1.89 \pm 0.16 \pm 0.10) \times 10^{-4}$$

$$\mathcal{B}(\bar{B}^{0} \to D^{+}K^{-}K_{S}^{0}) = (0.85 \pm 0.11 \pm 0.05) \times 10^{-4}$$

$$\mathcal{B}(B^{-} \to D^{*0}K^{-}K_{S}^{0}) = (1.57 \pm 0.27 \pm 0.12) \times 10^{-4}$$

$$\mathcal{B}(\bar{B}^{0} \to D^{*+}K^{-}K_{S}^{0}) = (0.96 \pm 0.18 \pm 0.06) \times 10^{-4}$$

First observation of three new decay channels.

Summary

Hadronic decays important element in Belle II *B* physics program. First analyses using the full data sample (362 fb⁻¹).

- $B \to DK$ decay measurements, with D decaying in Cabibbo-suppressed or CP eigenstates final states contribute in Belle + Belle II combined γ program.
- Measurements of $B \to \pi\pi$ and $B \to \rho\rho$ contribute in Belle II program for angle α .
- $B^0 o K^0_S \pi^0$ asymmetry achieves world's best precision, competitive $I_{K\pi}$ sensitivity.
- Three new decay channels observed in $B \to DKK$, with structures observed in $m(K^-K_S^0)$ and Dalitz distributions.

Backup

y using GLS method

Parameters physics meanings

• 2 \mathcal{A}_{CP} for $DK(D\pi)$:

$$\mathcal{A}_{SS}^{DK} \equiv \frac{N_{SS}^{-} - N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}$$
$$\mathcal{A}_{OS}^{DK} \equiv \frac{N_{OS}^{-} - N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}$$

Physics meanings
$$\mathscr{A}_{SS}^{DK} = \frac{2r_B r_D \kappa \sin(\delta_B - \delta_D) \sin \phi_3}{1 + r_B^2 r_D^2 + 2r_B r_D \kappa \cos(\delta_B - \delta_D) \cos \phi_3}$$
$$\mathscr{A}_{SS}^{DK} = \frac{2r_B r_D \kappa \sin(\delta_B + \delta_D) \sin \phi_3}{1 + r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B + \delta_D) \cos \phi_3}$$

• 3 ratios:

$$\mathcal{R}_{SS}^{DK/D\pi} \equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{SS}^{'} + N_{SS}^{'+}} \qquad \qquad \mathcal{R}_{SS}^{DK/D\pi} = R \frac{1 + r_{B}^{2} r_{D}^{2} + 2 r_{B} r_{D} \kappa \cos(\delta_{B} - \delta_{D}) \cos\phi_{3}}{1 + r_{B}^{'} r_{D}^{2} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} - \delta_{D}) \cos\phi_{3}}$$

$$\mathcal{R}_{OS}^{DK/D\pi} \equiv \frac{N_{OS}^{-} + N_{OS}^{+}}{N_{OS}^{'} + N_{OS}^{'+}} \qquad \qquad \text{Physics meanings} \qquad \mathcal{R}_{OS}^{DK/D\pi} = R \frac{r_{B}^{2} + r_{D}^{2} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} + \delta_{D}) \cos\phi_{3}}{r_{B}^{'} + r_{D}^{2} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} - \delta_{D}) \cos\phi_{3}}$$

$$\mathcal{R}_{SS/OS}^{D\pi} \equiv \frac{N_{SS}^{'} + N_{SS}^{'+}}{N_{OS}^{'} + N_{OS}^{'+}} \qquad \qquad \mathcal{R}_{SS}^{DK/D\pi} \equiv \frac{1 + r_{B}^{'2} r_{D}^{2} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} - \delta_{D}) \cos\phi_{3}}{r_{B}^{'} + r_{D}^{'} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} - \delta_{D}) \cos\phi_{3}}$$

$$\mathcal{R}_{SS}^{DK/D\pi} \equiv \frac{1 + r_{B}^{'2} r_{D}^{2} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} - \delta_{D}) \cos\phi_{3}}{r_{B}^{'} + r_{D}^{'} + 2 r_{B}^{'} r_{D} \kappa \cos(\delta_{B}^{'} - \delta_{D}) \cos\phi_{3}}$$

γ using GLS method

Full D phase space

$$\mathcal{A}_{SS}^{DK} = -0.089 \pm 0.091 \pm 0.011$$

$$\mathcal{A}_{OS}^{DK} = +0.109 \pm 0.133 \pm 0.013$$

$$\mathcal{A}_{SS}^{D\pi} = +0.018 \pm 0.026 \pm 0.009$$

$$\mathcal{A}_{OS}^{D\pi} = -0.028 \pm 0.031 \pm 0.009$$

$$\mathcal{R}_{SS}^{DK/D\pi} = 0.122 \pm 0.012 \pm 0.004$$

$$\mathcal{R}_{OS}^{DK/D\pi} = 0.093 \pm 0.013 \pm 0.003$$

$$\mathcal{R}_{SS/OS}^{D\pi} = 1.428 \pm 0.057 \pm 0.002$$

*K** region

$$\mathcal{A}_{SS}^{DK} = +0.055 \pm 0.119 \pm 0.020$$

$$\mathcal{A}_{OS}^{DK} = +0.231 \pm 0.184 \pm 0.014$$

$$\mathcal{A}_{SS}^{D\pi} = +0.046 \pm 0.029 \pm 0.016$$

$$\mathcal{A}_{OS}^{D\pi} = +0.009 \pm 0.046 \pm 0.009$$

$$\mathcal{R}_{SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005$$

$$\mathcal{R}_{OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006$$

$$\mathcal{R}_{SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019$$

γ using GLS method

Systematic uncertainties (absolute)

	$A_{ m SS}^{DK}$	$A_{ m OS}^{DK}$	$A_{ m SS}^{D\pi}$	$A_{ m OS}^{D\pi}$	$R_{ m SS}^{DK/D\pi}$	$R_{ m OS}^{DK/D\pi}$	$R_{ m SS/OS}^{D\pi}$
Full D phase space							
$\epsilon_{K^\pm},\epsilon_{\pi^\pm}$	0.38	0.56	0.19	0.14	0.05	0.06	0.09
δ		0.03	_		0.04	0.03	0.02
Model	0.62	0.78	0.02	0.02	0.30	0.22	0.07
$\epsilon_{K_{ m S}^0K^-\pi^+}/\epsilon_{K_{ m S}^0K^+\pi^-}$	0.82	0.83	0.82	0.83	0.01	0.01	0.02
Total syst. unc.	1.1	1.3	0.9	0.9	0.4	0.3	0.2
Stat. unc.	9.1	13.3	2.6	3.1	1.2	1.3	5.7
$K^*(892)^{\pm}$ region							
$\epsilon_{K^\pm},\epsilon_{\pi^\pm}$	0.37	0.61	0.17	0.15	0.03	0.08	0.13
δ	0.02	0.02	0.01	0.01	0.03	0.04	0.04
Model	1.04	0.97	0.20	0.03	0.46	0.49	0.61
$\epsilon_{K_{ m S}^0K^-\pi^+}/\epsilon_{K_{ m S}^0K^+\pi^-}$	1.6	0.8	1.6	0.8	0.1	0.1	1.7
Total syst. unc.	2.0	1.4	1.6	0.9	0.5	0.6	1.9
Stat. unc.	11.9	18.4	2.9	4.6	1.2	2.0	13.2

y using GLW method

Physics meanings

$$\mathcal{A}_{CP\pm} = \frac{\Gamma(B^{-} \to D_{CP\pm}K^{-}) - \Gamma(B^{+} \to D_{CP\pm}K^{+})}{\Gamma(B^{-} \to D_{CP\pm}K^{-}) + \Gamma(B^{+} \to D_{CP\pm}K^{+})} = \pm \frac{r_{B}\sin\delta_{B}\sin\phi_{2}}{1 + r_{B}^{2} \pm 2r_{B}\cos delta_{B}\cos\phi_{3}},$$

$$\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}K^{+}) = R_{CP\pm}K^{+}$$

$$\mathcal{R}_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{flav}K^-) + \mathcal{B}(B^+ \to D_{flav}K^+)} \approx \frac{R_{CP\pm}}{R_{flav}}, \text{ with}$$

$$R_X \equiv \frac{\mathcal{B}(B^- \to D_X K^-) + \mathcal{B}^+ \to D_X K^+)}{\mathcal{B}(B^- \to D_X \pi^-) + \mathcal{B}^+ \to D_X \pi^+)}.$$

$$\Rightarrow \begin{cases} \mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2\cos\delta_B\cos\phi_3 \\ \mathcal{A}_{CP\pm} = \pm 2r_B\sin\phi_3/\mathcal{R}_{CP\pm} \end{cases}, \text{ assuming } \textit{CP} \text{ conservation in } B^\pm \to D\pi^\pm$$

- Channels:
 - Signal: $B \to D(\to KK, K_S^0 \pi^0) K$
 - R_{flav} control channel: $B \to D(\to K\pi)K$
 - R_X control channel: $B \to D\pi$

γ using GLW method

y using GLW method

γ estimation

[157.5, 175.0]

[0.241, 0.522]

[163.3, 171.5]

[0.321, 0.465]

 r_B

γ using GLW method

Systematic uncertainties (absolute)

	$\mathcal{R}_{C\!P+}$	$\mathcal{R}_{C\!P-}$	$\mathcal{A}_{C\!P+}$	$\mathcal{A}_{C\!P-}$
PDF parameters	0.012	0.014	0.002	0.002
PID parameters	0.009	0.010	0.003	0.005
peaking background yields	0.033	0.002	0.013	
Efficiency ratio	0.001	0.001	< 0.001	< 0.001
commonality of ΔE modes	-0.005	-0.006	< 0.001	< 0.001
Total systematic uncertainty	0.036	0.019	0.014	0.006
Statistical uncertainty	0.081	0.074	0.058	0.057

Isospin sum rule

Isospin sum rule

Systematic uncertainties

TABLE II. Summary of the relative systematic uncertainties (%) on the branching ratios.

				, ,		
Source	$B^0 o K^+\pi^-$	$B^0 o \pi^+\pi^-$	$B^+ o K^+ \pi^0$	$B^+ o \pi^+ \pi^0$	$B^+ o K_{\scriptscriptstyle S}^0 \pi^+$	$B^0 o K_{\scriptscriptstyle S}^0 \pi^0$
Tracking	0.5	0.5	0.2	0.2	0.7	0.5
$N_{Bar{B}}$	1.5	1.5	1.5	1.5	1.5	1.5
$f^{+-/00}$	2.5	2.5	2.4	2.4	2.4	2.5
π^0 efficiency	_	_	5.0	5.0	-	5.0
K_S^0 efficiency	-	-	-	-	2.0	2.0
CS efficiency	0.2	0.2	0.7	0.7	0.5	1.7
PID correction	0.1	0.1	0.1	0.2	-	-
ΔE shift and scale	0.1	0.2	1.2	2.0	0.3	1.7
$K\pi$ signal model	0.1	0.2	0.1	< 0.1	< 0.1	0.1
$\pi\pi$ signal model	< 0.1	0.1	< 0.1	< 0.1	-	-
$K\pi$ CF model	< 0.1	0.1	< 0.1	0.1	-	-
$\pi\pi$ CF model	0.1	0.2	< 0.1	0.1	-	-
$K_S^0K^+$ model	-	-	-	-	0.1	-
$B\overline{B}$ model	-	-	0.3	0.5	< 0.1	0.3
Multiple candidates	< 0.1	< 0.1	1.0	0.3	0.1	0.3
Total	3.0	3.0	6.0	6.2	3.6	6.6

TABLE III. Summary of the absolute systematic uncertainties on the CP asymmetries.

Source	$B^+ o K^+ \pi^-$	$B^+ o K^+ \pi^0$	$B^+ o \pi^+ \pi^0$	$B^+ o K_{\scriptscriptstyle S}^0 \pi^+$	$B^0 o K_{\scriptscriptstyle S}^0 \pi^0$
ΔE shift and scale	< 0.001	0.001	0.002	0.001	0.003
$K_S^0K^+$ model	-	-	-	0.001	
$B\overline{B}$ background asymmetry	-	-	-	-	0.046
$q\overline{q}$ background asymmetry	-	-	_	_	0.024
Fitting bias	_	_	0.007	0.006	-
Instrumental asymmetry	0.007	0.005	0.004	0.004	-
Total	0.007	0.005	0.008	0.007	0.052

ΔE fit and $m(K^-K_S^0)$ distributions

Dalitz distributions

Systematic uncertainties (relative)

Source	$B^-\to D^0K^-K^0_S$	$\overline B{}^0 o D^+ K^- K^0_S$	$B^-\to D^{*0}K^-K^0_S$	$\overline B{}^0 o D^{*+} K^- K^0_S$
Eff MC sample size	0.6	0.9	1.0	0.8
Eff tracking	0.7	1.0	0.7	1.0
Eff π^+ from D^{*+}	_	_	-	2.7
Eff K_S^0	3.4	3.4	3.4	3.3
Eff PID	1.3	1.4	0.5	0.6
Eff π^0	-	-	5.1	-
Signal model	1.9	3.3	2.7	3.1
Bkg model	1.1	0.8	0.1	0.1
Self-cross-feed	-	-	2.7	-
D^{*0} peaking bkg	-	-	0.9	-
$N_{B\overline{B}}, f_{+-,00}$	2.7	2.8	2.7	2.8
Intermediate \mathcal{B} s	0.7	1.7	1.6	1.1
Total systematic	5.2	6.1	7.6	6.2
Statistical	8.3	13.5	17.1	19.0