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Introduction

Belle IT

= Located at SuperKEKB
= Asymmetric e*e~ collider
= At KEK, Tsukuba, Japan

= High-precision tests of the standard
model

Obijective of particle identification (PID

= Identify particle species of charged
tracks

= Distinguish charged-particle species:
e, u, T, K, p, d
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Particle Identification

= 6 subdetectors used for particle
identification

= Each provides a likelihood for a given
particle species :

(0]
. Lh
= 6 subdetectors (o) 6 particle species (h)
= In total 36 likelihoods
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Pure Likelihood-Based Approach

Current approach at Belle II: pure likelihood-based approach
= Combine detector likelihoods - likelihood for a given particle species:
'Lh — L,SlVD L’(lIDC LTOP LARICH LECL LKLM

= Our goal is to do K — m Separation - Binary classification

- P(K) =

LK"'LTC

= P(m) =

LK+LTL'
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Use Neural Network to improve Performance

Limitations of pure likelihood-based approach

= Computation of likelihoods requires modeling, which requires approximations
= Does not account for correlation
= Challenging to adjust to real world

= Improve the pure likelihood-based approach by using a neural network
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Neural Network for 2 Hypotheses

= 40 inputs:

= Loglikelihood for the 6 particles
hypotheses and 6 subdetectors y

= Magnitude and direction of o n = Pyny (K)
track momentum
= Charge ? = Pyy (1)

= 2 hidden dense layers of 512 nodes

|

40
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Training Samples

Simulated data: Particle-gun MC (pgMC

= Generate particles with isotropic momentum
distribution

= Detector response simulated using Belle II
simulation framework

Real data sample

= Sample with known true species without using PID
detectors

= Physics process that produces only certain particle
species
= Process to obtain clean sample of K and
- D** 5 Dt
= D> Ktnt
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Balancing of Training sample

= Specific sample:

- D*i - Dnt 10 Real Data Unbalanced K] — [Real Data Unbalanced r]
= Do KTt s o 300
Rhet
_ ’ 200
= More K events at high momenta 2
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= More 7 events at low momenta 100 2
~ Bias > Neural network should not % 0o %
learn sample-specific features = 2
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z
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Balancing

Minimize this bias

= Divide the sample in cos(8) and |p| bins and drop tracks according to the imbalance
= Balanced sample = Used for training

[Real Data Balanced K] — [Real Data Balanced ]
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Testing the Particle-Identification Performance

= Testing sample: Real Data
= K efficiency: probability that K — K
= 71 mis-identification rate: probability that 1 — K
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Models overview

» Pure likelihood-based
» NN trained on real data

| o

= Predict probability for pion and kaon
hypothesis
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P rmance

Tested on Real Data D Sample

1.0
0 o Belle I1 ki S = 1
~ Pure likelihood-based: performs T e [ Loty
the worst
0.9 1
|
: has a better
performance than pure likelihood- 708
based s
. =
» NN trained on real data: performs i .
best ’
Ly Pure likelihood: 2 species
Trained on NN particle-gun MC: 2 species
Trained on NN real data D: 2 species
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Extension: Neural Network for 6 Hypotheses

= Identify all 6 hypotheses using a single = Training neural network for 6
neural network (e, u, 7, K, p, d) hypotheses requires clean training on

sample containing all 6 particle species
- Train on particle-gun MC

Neural Network for 6 hypotheses

= Same inputs
= Same network structure

|

¥

Does training on all 6 species decrease
the K — 7 separation performance?
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Models overview

Models (for 2 hypotheses

» Pure likelihood-based
» NN trained on real data

| o

= Predict probability for pion and kaon
hypothesis

Models (for 6 hypotheses

= NN trained on particle-gun MC for 6 } = Predicts probabilities for all 6
hypotheses

hypotheses
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Binary Normalization

n

Y

b

U3

= Pyn(e)

= Py (W)
= Pyy (1)
= Pyy (K)
= Pyy (0)

= Pyy (d)

= Normalize probabilities considering only the tested hypotheses, i.e.
K and m here:

. p _ Pyn(K)
I = PnN(K)+Pyn ()

. p _ Pyn(m)
Bl = PN (K)+Pnn(TT)

| g
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P rmance

Models 10 Tested on Real Data D Sample

Belle I work in progress f Ldt =404 fb!

» Pure likelihood-based

= NN trained on real data 09 1
|
0.8

= ]

g

=

53]

X 0.7

= There is no loss in performance for K — ¢
separation between training a neural
network for 2 or for 6 hypotheses

= Pure likelihood: 2 species
Trained on NN particle-gun MC: 2 species
== Trained on NN real data D: 2 species

0.6

=== Trained on NN particle-gun MC: 6 species
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Conclusions

Models for 2 hypotheses

= Neural networks perform better than pure likelihood-based approach > overcome limitations
= Neural networks performs better when trained or real data than with simulated data

= Training on real data overcomes imperfections in simulation
= Performance increase of:

= 30% when trained on real data

= 20% when trained on simulated data

Models for 6 hypotheses

= Neural networks can be trained for multiclass classification without losing the performance for binary
classification

Outlook

= Test the 6 hypotheses neural network for other particle species, e.g. e or u
= Go beyond likelihood inputs
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Real Data and Particle-Gun MC

particle-gun MC Real data

= Covers full kinematic range = Covers limited kinematic range |p| < 4.5 GeV/ c
= Particle-gun MC sample designed to = Neural Network cannot be used outside
impose minimal bias from sample this range
distributions
10 Particle-Gun MC Simulation Belle IT work in progress Real Data
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MC D Sample vs Particle-Gun MC

= MC simulating the physical decay of D
= Particle-gun MC: generating isotopically particles

1.0 MC Simulation D Sample Particle-Gun MC Simulation
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Performance: Tested on MC D Sample
1.0

Belle IT work in progress

» Both NN trained on real data and

: have a better
performance than pure likelihood-
based

K Efficiency

Tested on MC D Sample
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Pure likelihood: 2 species
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Trained on NN real data D: 2 species
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Test On MC: Results

= Neural network trained on real data performs similarly than

= It confirms that Training in Real Data overcomes imperfections in simulation
and it is not something related to D* sample



~ Sample where we know the true specie without PID: D**
- D" 5> Dnt
- Do K nt

or

- D" >Dn~
D> K'n~
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