Particle Identification at Belle II Using Neural Networks

Xavier Simó for the Belle II collaboration (xavi.simo@tum.de)

DPG Fühjahrstagung T 10.4, March 20, 2023

Introduction

Belle II

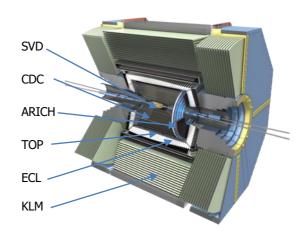
- Located at SuperKEKB
- ► Asymmetric *e*⁺*e*[−] collider
- ► At KEK, Tsukuba, Japan
- High-precision tests of the standard model

Objective of particle identification (PID)

- Identify particle species of charged tracks
- ► Distinguish charged-particle species: e, μ , π , K, p, d

Particle Identification

- 6 subdetectors used for particle identification
- ► Each provides a likelihood for a given particle species :
 - $-\mathcal{L}_{h}^{o}$
- ► 6 subdetectors (*o*) * 6 particle species (*h*)
 - ► In total 36 likelihoods



Pure Likelihood-Based Approach

Current approach at Belle II: pure likelihood-based approach

Combine detector likelihoods → likelihood for a given particle species:

$$\mathcal{L}_h = \mathcal{L}_h^{\text{SVD}} \cdot \mathcal{L}_h^{\text{CDC}} \cdot \mathcal{L}_h^{\text{TOP}} \cdot \mathcal{L}_h^{\text{ARICH}} \cdot \mathcal{L}_h^{\text{ECL}} \cdot \mathcal{L}_h^{\text{KLM}}$$

- ▶ Our goal is to do $K \pi$ Separation → Binary classification
- $P(K) \equiv \frac{\mathcal{L}_K}{\mathcal{L}_K + \mathcal{L}_{\pi}}$ $P(\pi) \equiv \frac{\mathcal{L}_{\pi}}{\mathcal{L}_K + \mathcal{L}_{\pi}}$

Use Neural Network to improve Performance

Limitations of pure likelihood-based approach

- Computation of likelihoods requires modeling, which requires approximations
- Does not account for correlation
- Challenging to adjust to real world

Goal

► Improve the pure likelihood-based approach by using a neural network

Neural Network for 2 Hypotheses

- 40 inputs:
 - Loglikelihood for the 6 particles hypotheses and 6 subdetectors
 - Magnitude and direction of track momentum
 - Charge
- 2 hidden dense layers of 512 nodes
- ➤ 2 outputs → Probabilities for kaon and pion hypotheses

 h_2

 h_3

 h_{511}

 h_{512}

$$p_1 = P_{NN}(K)$$

$$= P_{NN} (\pi)$$

Training Samples

Simulated data: Particle-gun MC (pgMC)

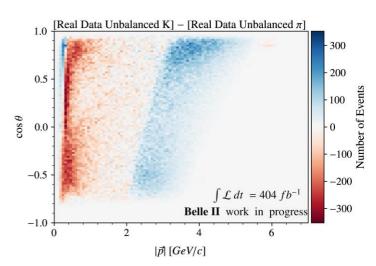
- Generate particles with isotropic momentum distribution
- Detector response simulated using Belle II simulation framework

Real data sample

- Sample with known true species without using PID detectors
- Physics process that produces only certain particle species
- Process to obtain clean sample of K and π
 - $D^{*\pm} \to \overline{D} \ \pi^{\pm}$
 - $ightharpoonup \overline{D} o K^{\mp} \pi^{\pm}$

Balancing of Training sample

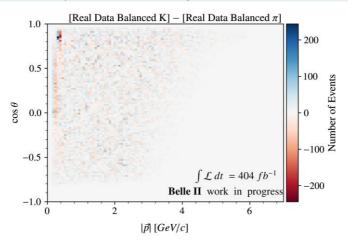
- Specific sample:
- ► More *K* events at high momenta
- ightharpoonup More π events at low momenta
- Bias → Neural network should not learn sample-specific features



Balancing

Minimize this bias

- ▶ Divide the sample in $cos(\theta)$ and $|\vec{p}|$ bins and drop tracks according to the imbalance
 - ▶ Balanced sample → Used for training



Testing the Particle-Identification Performance

- Testing sample: Real Data
- ► K efficiency: probability that $K \to K$
- \blacktriangleright π mis-identification rate: probability that $\pi \to K$

Models overview

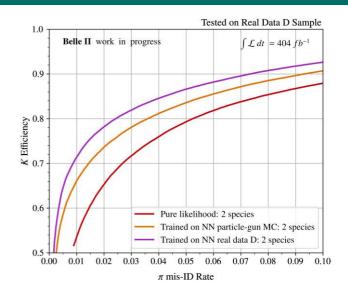
Models

- Pure likelihood-based
- ► NN trained on real data
- ► NN trained on particle-gun MC for 2 hypotheses

 Predict probability for pion and kaon hypothesis

Performance

- Pure likelihood-based: performs the worst
- NN trained on particle-gun MC for 2 hypotheses: has a better performance than pure likelihoodbased
- NN trained on real data: performs best



Extension: Neural Network for 6 Hypotheses

Motivation

► Identify all 6 hypotheses using a single neural network (e, μ, π, K, p, d)

Neural Network for 6 hypotheses

- Same inputs
- Same network structure
- ► 6 outputs → Probabilities for 6 possible hypotheses

Training sample

 ► Training neural network for 6 hypotheses requires clean training on sample containing all 6 particle species
 → Train on particle-gun MC

Does training on all 6 species decrease the $K - \pi$ separation performance?

Models overview

Models (for 2 hypotheses)

- Pure likelihood-based
- ► NN trained on real data
- NN trained on particle-gun MC for 2 hypotheses

 Predict probability for pion and kaon hypothesis

Models (for 6 hypotheses)

 NN trained on particle-gun MC for 6 hypotheses Predicts probabilities for all 6 hypotheses

Binary Normalization

$$y_1 = P_{NN}(e)$$

$$y_2 = P_{NN} (\mu)$$

$$y_3 = P_{NN} (\pi)$$

$$y_4 = P_{NN}(K)$$

$$y_5 = P_{NN} (p)$$

$$y_6 = P_{NN}(d)$$

Normalize probabilities considering only the tested hypotheses, i.e. K and π here:

$$P'(K) = \frac{P_{NN}(K)}{P_{NN}(K) + P_{NN}(\pi)}$$

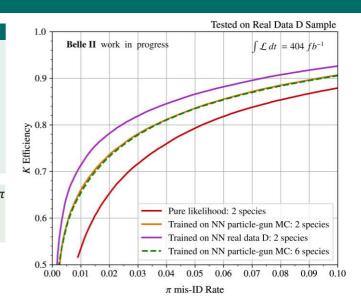
$$P'(\pi) = \frac{P_{NN}(\pi)}{P_{NN}(K) + P_{NN}(\pi)}$$

 NN trained on particle-gun MC for 6 hypotheses binary normalization

Performance

Models

- Pure likelihood-based
- NN trained on real data
- NN trained on particle-gun MC for 2 hypotheses
- NN trained on particle-gun MC for 6 hypotheses Binary normalization
- There is no loss in performance for $K-\pi$ separation between training a neural network for 2 or for 6 hypotheses



Conclusions

Models for 2 hypotheses

- Neural networks perform better than pure likelihood-based approach → overcome limitations
- Neural networks performs better when trained or real data than with simulated data
 - Training on real data overcomes imperfections in simulation
- Performance increase of:
 - 30% when trained on real data
 - ► 20% when trained on simulated data

Models for 6 hypotheses

► Neural networks can be trained for multiclass classification without losing the performance for binary classification

Outlook

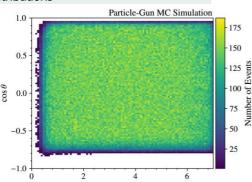
- lacktriangle Test the 6 hypotheses neural network for other particle species, e.g. e or μ
- Go beyond likelihood inputs

Backup

Real Data and Particle-Gun MC

particle-gun MC

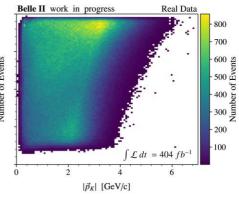
- Covers full kinematic range
- Particle-gun MC sample designed to impose minimal bias from sample distributions



 $|\vec{p}_K|$ [GeV/c]

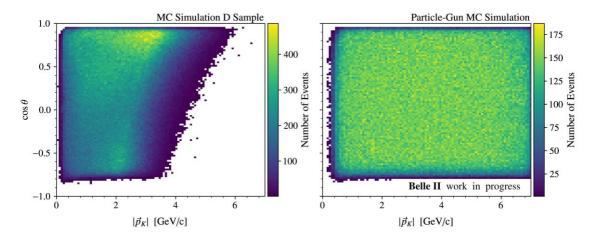
Real data

- ► Covers limited kinematic range $|\vec{p}|$ < 4.5 GeV/ c
 - Neural Network cannot be used outside this range



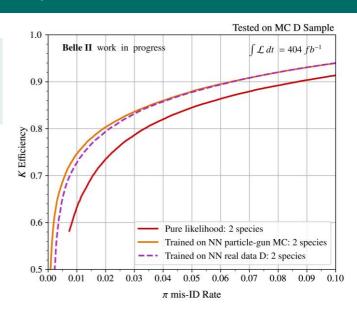
MC D Sample vs Particle-Gun MC

- MC simulating the physical decay of D
- Particle-gun MC: generating isotopically particles



Performance: Tested on MC D Sample

 Both NN trained on real data and NN trained on particle-gun MC for 2 hypotheses: have a better performance than pure likelihoodbased



Test On MC: Results

- Neural network trained on real data performs similarly than neural network trained on particle-gun MC for 2 hypotheses
 - ► It confirms that Training in Real Data overcomes imperfections in simulation and it is not something related to D* sample

Sample

- ► Sample where we know the true specie without PID: $D^{*\pm}$
- $D^{*+} \to D \pi^+$ $D \to K^- \pi^+$

or

$$D^{*-} \to \overline{D} \pi^{-}$$

$$\overline{D} \to K^{+}\pi^{-}$$