

Feasibility of *R*(**X**) at Belle II

Searching for lepton universality violation in inclusive semileptonic *B* decays

Peter Lewis | University of Bonn KEK-FF | 10 Feb 2023

This talk contains public material from **PhD/Masters theses**

These results are **unpublished** and **unapproved** and should *not* be considered official collaboration results

Only plots with the "Belle II" label are Belle II plots!

Snowmass 21

Submitted to the Proceedings of the US Community Study in the Future of Particle Physics (Snowmass 2021) An intriguing claim... 18 $\mathcal{R}(X)$ (had FEI, lep τ) Snowmass White Paper: Belle II physics reach and plans for $\mathcal{R}(\pi)$ (had FEI) 16 the next decade and beyond The **strongest** test of τ/ℓ universality will $\mathcal{R}(D)$ (had FEI, lep τ) Belle II Collaboration uncertainty [%] 14 $\mathcal{R}(D)$ (SL FEI, lep τ) come from the *inclusive* measurement: $\mathcal{R}(D^*)$ (had FEI, lep τ) $\mathcal{R}(D^*)$ (SL FEI, lep τ) $\mathcal{R}(X) = \frac{\mathcal{B}(B \to X\tau\nu)}{\mathcal{B}(B \to X\ell\nu)}$ $\mathcal{R}(D^*)$ (had FEI, had τ) 10 Abstrac e describe the physics potential of the Belle II exp lata corresponding to integrated luminosities of 1 ab⁻¹ to 50 ab⁻ Belle II's unique capabilities in reconstructing neutral particles, neutrinos and othe visible" particles, and inclusive final states to probe non-standard-model physics We project sensitivities for compelling mer nd where Belle II reach is unique or world leading Total 6 This has **never*** been measured. Why? What 2 makes us think that we can? 10 25 50 5 5 Data sample in ab^{-1}

First: why R(X)?

Fully inclusive *B* decays:

- $\sim 2/3$ overlap with *D* and *D**
- ~1/3 contribution from *D*** and nonresonant X_c

Fully inclusive *D* decays:

- ~1/4 overlap with typical list of exclusive *D* modes
- The rest: *ugly stuff*! $v, K_{\rm L}^{0}, N\pi^{0}...$

Breakdown of $B \rightarrow X \ell v$ branching fractions (assume $B \rightarrow X \tau v$ is similar)

R(*X*) is critical **cross-check** of *R*(*D*(*)) *and* a partially **complementary** test of LU

Multiple LEP experiments measured

 $\mathcal{R}(X) = \frac{\mathcal{B}(b' \to X\tau\nu)}{\mathcal{B}(b' \to X\ell\nu)}$

From which *R*(*X*) can be *inferred*

A puzzle: their measurements of $\mathcal{B}(b \to X\tau\nu)$ are completely **saturated** by current D/D^* BFs

An update is urgently needed

A recent, intriguing analysis at Belle...

...was not published. Why?

Here's how this analysis works...

Tight tag quality selections

How can we identify $X\tau v$?

 p_i : lepton momentum distribution (insufficient by itself)

How can we identify $X\tau v$?

- p_i : lepton momentum distribution
- $m_{\rm miss}^{2}$: missing mass (adds information but is also insufficient)

How can we identify $X\tau v$?

- p_l : lepton momentum distribution
- $m_{\rm miss}^2$: missing mass
- *M*_X: invariant mass of "X" (adds some orthogonal information)

So, just use a 3D fit?

It's not that simple... inclusive *modeling* is *hard*

What modeling do we depend on?

- All $B \rightarrow X \ell \nu$ decays
- (all other *B* decays)
- All *X* decays
- All continuum processes
- All detector effects (acceptance, efficiency, backgrounds, etc...)

What could be the culprit?

Belle attempt

Conclusions The discrepancy between data and MC at $m_{\text{miss}}^2 < 0 \,\text{GeV}$ has a complex origin.

Extensive work to understand mismodeling

Important insights:

- Detector effects are far too small
- Beam backgrounds are far too small
- The culprit appears to be somewhere in the *physics simulation*

Ultimately not approved because solution couldn't be found...

Starting afresh

Belle II approach:

- 1. First learn **everything we can** about **X**
 - a. What's **in** there?
 - b. What determines the **shape**?
 - c. What's **modeled** well/poorly?
- 2. Only then do we attempt extraction

Let's talk about *X*...

Dennis Benterbusch Master's thesis, U. Bonn, 2020

Poorly measured, poorly described

Almost all of this includes **exactly one** *D* **decay**...

$D \rightarrow ?$ (*overlapping* contributions):

			D^0	$D^{+/-}$
Noutrinos	e ⁺ anything	[4]	$(6.49 \pm 0.11)\%$	$(16.07 \pm 0.30)\%$
Neutimos	μ^+ anything		$(6.8\pm0.6)\%$	$(17.6\pm3.2)\%$
	K ⁻ anything		$(54.7\pm2.8)\%$	$(25.7\pm1.4)\%$
$1/2 \ {\rm K}_{\rm L}^{0}$	\overline{K}^0 anything $+$ K^0 anything		$(47\pm4)\%$	$(61\pm5)\%$
	K ⁺ anything		$(3.4\pm0.4)\%$	$(5.9\pm0.8)\%$

A large fraction of the time the *D* cannot be fully reconstructed.

X: what determines the shape?

Dennis Benterbusch Master's thesis, U. Bonn, 2020 bad tags bad tags 17500 *D** *hadronic* fakes 1750 fakes secondary secondary 15000 other XIv other XIv 1500 $B \rightarrow D l v$ $B \rightarrow D l v$ $B \rightarrow D^* I v$ 12500 $\rightarrow D^* I v$ # cand. per bin # cand. per bin 1250 $B \rightarrow D^{**} l v$ $\rightarrow D^{**} I v$ $B \rightarrow X \tau v$ →Xτv 10000 1000 $B \rightarrow X \tau v \times 10$ $B \rightarrow X \tau \nu \times 10$ D hadronic. 7500 750 Unphysically 5000 Je Marth 500 large masses! D** 2500 250 SL D decay Nonresonant Шлл 0 2 3 5 0 2 3 6 Mxreco / GeV M_x^{gen} / GeV

What M_X (invariant mass) *would* look like if we made no **reconstruction errors in the X** (except *neutrinos*) What it *really* looks like (in MC)...

... how does this shape arise?

X: what determines the **shape**?

*M*_x shape describes the **underlying physics**... smeared out by (*relatively* well-modeled) **detector effects**

Contributions to M_x misreconstruction by **error type**

Mostly *missing* and *extra*, which are **largely irreducible**

The $M_{\rm X}$ shape is sensitive to the types of modeling that are hardest to do right:

- \circ Inclusive K_L^0 BF
- \circ *D*^{**} and nonres. BF
- Modeling of high-multiplicity *D* decays

Implication: M_X gives us a handle on all of the physics modeling that impacts $m_{\text{miss}}^2 + \dots$

Why not just fix the modeling instead?

Conclusions from extensive work by current team:

- **Branching fractions** are a big piece of the puzzle (particularly $D \rightarrow K_{\rm L}^{0} X$) but *cannot solve it entirely*
- The **phase-space modeling** using in ~40% of *D* decays is significant/unfixable
- The PDG inclusive and exclusive BFs cannot be reconciled

Fixing this at generator level is not feasible; instead, use M_X to **reweight** our MC...

		PDG		MC		
	Decay	D^0 BF / %	D ⁺ BF / %	D^0 BF / %	D ⁺ BF / %	
	<i>K</i> ⁻	54.7 ± 2.8	25.7 ± 1.4	56.1	30.5	
	$K^0 / ar{K}^0$	47 ± 4	61 ± 5	40.0	57.5	
*	<i>K</i> ⁺	3.4 ± 0.4	5.9 ± 0.8	3.7	7.0	
	<i>K</i> *,-	15 ± 9	6 ± 5	12.7	4.6	
	$ar{K}^{*,0}$	9 ± 4	23 ± 5	0 1	10.3	
	$K^{*,0}$	2.8 ± 1.3	< 6.6	2.1	19.5	

Henrik Junkerkalefeld

Modeling

Why is M_X so nice for this?

It controls the **part** of the reconstruction that we know the least about ...

Does it work?

M_x reweighting

Henrik Junkerkalefeld

A path forward

- M_x reweighting unlocks R(X) at Belle II...
- ...but a huge amount remains to be learned about inclusive modeling of the *D* decays

Look for *R*(*X*) in La Thuile!