

Feb. 9 - 11, 2023, KEK Tsukuba Campus Accomplishments and mysteries in quark flavor physics (KM 50) / **KEK Flavor Factories workshop (KEK-FF 2023)**

DMNet

Boat Belle I

Qi-Dong Zhou (IAR/KMI, Nagoya Univ.) **On behalf of Belle II Collaboration**

Semi-tauonic B decay: $B \rightarrow D^{(*)}\tau v$

 $\left|\overline{B}^{0} \to D^{*+}[W^{-} \to \tau^{-}\overline{v_{\tau}}]\right|$

- Universality of the lepton coupling to the W gauge boson (Symmetry) Lepton Flavor Universality (LFU) is fundamental theory of Standard Model (SM)
- $B \rightarrow D^{(*)}\tau v$ sensitive to New physics (NP) because the massive 3rd generation b quark and τ lepton are involved
 - Flavor-dependent coupling to fermions could violates LFU

R(D) and $R(D^*)$ anomaly

- QED corrections depend on lepton velocity (τ vs. (e, μ))

Experiment	Tag method	τ decay	Correlation(stat/syst/total)	R(D)	R(D*)
Babar '12	Hadronic	ίνν	-0.45/-0.07/-0.27	$0.440 \pm 0.058 \pm 0.042$	0.332 ± 0.024 ± 0.018
Belle '15	Hadronic	ίνν	-0.56/-0.11/-0.49	$0.375 \pm 0.064 \pm 0.026$	0.293 ± 0.038 ± 0.015
LHCb '15	-	$\mu \nu \nu$		-	$0.336 \pm 0.027 \pm 0.030$
Belle '16	Semileptonic	ίνν		_	0.302 ± 0.030 ± 0.011
Belle '17	Hadronic	πν,ρν		_	$0.270 \pm 0.035 \pm 0.028_{-0.025}$
LHCb '18	-	πππν		_	0.283 ± 0.019 ± 0.029
Belle '20	semileptonic	ίνν	-0.53/-0.51/-0.51	$0.307 \pm 0.037 \pm 0.016$	0.283 ± 0.018 ± 0.014
LHCb '22	_	$\mu \nu \nu$	-0.49/ /-0.43	$0.441 \pm 0.060 \pm 0.066$	0.281 ± 0.018 ± 0.024
Average	_	_	-0.43/-0.07/-0.29	0.358 ± 0.025 ± 0.012	$0.285 \pm 0.010 \pm 0.008$
SM				0.298 ± 0.004	0.254 ± 0.005

Ratio of branch fractions cancel out most of the $\frac{Br(\bar{B}^0 \to D^{(*)+}\tau^- \bar{\nu}_{\tau})}{Br(\bar{B}^0 \to D^{(*)+}\ell^- \bar{\nu}_{\ell})} \quad \text{uncertainties on } |V_{cb}|, \text{ form}$ factors and the experimental systematics

Charged lepton mass changes kinematics and modifies form factors in the hadronization

R(D) and $R(D^*)$ experiments

- Experiments at *B* factory
 - e+e-→ γ (4S) →BB :

Data set for R(D*) measurement

- World's highest instantaneous luminosity: $L = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ KEKB record: 2.1 x 10³⁴ cm⁻² s⁻¹
- Belle II data taking efficiency ~90%
- 424 fb⁻¹ until Long Shutdown (LS) 1, ~363 fb⁻¹ on γ (4S)
 - Belle: 1 ab⁻¹
- First R(D*) measurement at Belle II using 189 fb⁻¹ data-set targeting the end of spring 2023

Tagging methods

- B tagging is necessary to measure $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ ($\nu \ge 2$) simultaneously
- Hadronic tag
 - Exclusive tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background
 - Inclusive tag
 - Reconstruct tag B with all particles except signal B
 - Higher efficiency than exclusive tag
 - Low purity, need clean signal-side final state

- Semileptonic tag
 - Reconstruct $B \rightarrow D^{(*)} l v$

- <u>Hadronic tag</u>
 - Exclusive tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background

- Fully reconstruct one of the B mesons (B tag), possible to measure momentum of other B meson (B signal)
- Indirectly measure missing momentum of neutrinos in signal B decays
- $M^2_{\text{miss}} = (p_{\text{beam}} p_B_{\text{tag}} p_D(*) p_i)^2$

• E_{ECL} unassigned neutral energy in the calorimeter $E_{ECL} = \sum_{i}^{\gamma} E_{i}^{\gamma}$ yields determination 8

Hadronic tag reconstruction at Belle II

- Hadronic tagging reconstruction : Full Event Interpretation (FEI) trained 200 Boost Decision Tree (BDT) to reconstruct ~100 decay channels, ~10,000 B decay chains
 - • ε =0.35% for B^{\pm}
 - • ε =0.27% for B^0

arXiv:2008.06096

D^* decays	D decays	• Reconstruct B-
	$D^0 \rightarrow K^- \pi^+ \pi^0$	same selectior
	$D^0 \to K^- \pi^+ \pi^- \pi^+$	• D meson recor
	$D^0 \to K^0_S \pi^+ \pi^- \pi^0$ $D^0 \to K^- \pi^+$	• 8 D ⁰ modes
$D^{*+} \rightarrow D^0 \pi^+$	$D^0 \rightarrow K^0_S \pi^+ \pi^-$	• 4 D+ modes
	$D^0 \to K^0_S \pi^0$ $D^0 \to K^- K^+$	• D* meson reco
	$D^{0} \rightarrow \pi^{+}\pi^{-}$	momentum π +
	$D^+ \to K^- \pi^+ \pi^+$	$\bullet D^{*+} \to D0\pi + //$
$D^{*+} \rightarrow D^+ \pi^0$	$D^+ \to K^0_S \pi^+$	$\bullet D^{*0} \rightarrow D^{0} \pi^{0}$
	$D^+ \rightarrow K^- K^+ \pi^+$ $D^+ \rightarrow K^0 K^+$	
	$\frac{D^{+} \rightarrow \Lambda_{S} \Lambda^{+}}{D^{0} \rightarrow K^{-} + 0}$	• τ lepton recons
	$D^0 \rightarrow K^- \pi^+ \pi^0$ $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$	 Both neutral ar
	$D^0 \rightarrow K^0_S \pi^+ \pi^- \pi^0$	roconstruct wit
$D^{*0} \rightarrow D^0 \pi^0$	$D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow K^0 + -$	
	$D^{\circ} \rightarrow K^{\circ}_{S}\pi^{+}\pi^{-}$ $D^{0} \rightarrow K^{0}_{S}\pi^{0}$	
	$D^0 \rightarrow K^- K^+$	
	$D^0 ightarrow \pi^+\pi^-$	

Signal side reconstruction

$$B \rightarrow D^* \tau v$$
 and $B \rightarrow D^* l v$ with ons

construct with K^{\pm} , π^{\pm} , K_s , π^0

- es (Br ~36%)
- es (Br ~12.3%)
- construct with D+/D⁰ and low π^+/π^0
- $+/D+\pi^0$ (Br ~98%) (Br ~65%)
- onstruct with l (e, μ) $\bar{\nu}\nu$
- and charged B[±]/B⁰ mesons
- with D^{*+}/D^{*0} and $\tau/l = (e, \mu)$

Missing energy

Improvement of reconstruction at Belle II

- Improve the reconstruction methodology at Belle II
 - Keep reasonably large reconstruction candidates
 - Found the maximum of FOM $N_{signal} / \sqrt{N_{signal} + N_{background}}$, by scanning the optimal selections
 - Improve 35% of FOM vs. Belle '15 hadronic tag $R(D^{(*)})$ analysis

• Fraction of survived B candidates in each category after event selections are estimated based on Belle II MC simulation

B condidates	$B \rightarrow D^* \tau \nu$	$B \rightarrow D * l \nu$	Background Truth $D^{(*)}$ $B \rightarrow D^{**} l\nu, B \rightarrow D^{(*)} X, B^0 <-> B^{\pm}, \dots$	Background Fake D ^(*)
B 0	2.7%	65.5%	12.5%	19.2%
B±	1.7%	34.7%	5.9%	57.8%

Dominant backgrounds

Calibration of fake D^* background on ΔM_{D^*} sideband

Estimate the most dominate background (fake D^*) using ΔM_{D^*} sideband • Fit ΔM_{D^*} distribution at sideband, threshold or Chebychev functions

- Obtain a calibration factor

Fitting methodology and variables • Extracting $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ yields by a two-dimensional simultaneously fit

- - $M^2_{\text{miss}} = (p_{\text{beam}} p_{B_{\text{tag}}} p_{D(*)} p_{0})^2$
 - E_{ECL} unassigned neutral energy in the calorimeter $E_{ECL} = \sum E_i^{\gamma}$

• PDFs in two dimensions with uniform 24 M²_{miss} bins and 20 E_{ECL} bins after kernel density estimation • $R(D^*)$ obtained by simultaneous fits among three D^*

modes

Signal mode $\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}$

Signal mode $\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}$ with misidentified lepton from τ

Normalization mode $\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$

Normalization mode $\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$ with misidentified lepton

 $\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$

Hadronic *B* decays

 B^0 $\leftrightarrow B^{\pm}$ tag misidentification

 $q\overline{q} (q = u, d, s, c)$

Background with fake *D**

Backgrounds

with true D^*

Constrain yields with sidebands

Fixed with MC yields

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

-0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Fitter validation with pseudo data

- Producing 5000 random pseudo data set with 189 fb⁻¹ based on PDF where $R(D^*) = 0.254$ (SM expectation)
- The fitter performance confirmed by R(D*) pull distribution
- by scanned input $R(D^*)$ in the range of 0.01 to 5.0

• Linearity check of fitter has also been confirmed based on Asimov fit method, Eur.Phys.J.C71:1554,2011

Belle II R(D*) sensitivity at 189 fb⁻¹ Producing Asimov MC data set with 189 fb⁻¹ based on PDF where R(D*) = 0.254 (SM expectation) The fit returns R(D*) = 0.254, statistical uncertainty is +18/-17% at 189 fb⁻¹

• Belle '15 statistical uncertainty is 13% (15%@ R(D*) = 0.254)

 $R(D^*) = 0.254^{+0.046}_{-0.043} \begin{pmatrix} +18 & \% \\ -17 & \% \end{pmatrix}$

al uncertainty is +18/-17% at 189 fb⁻¹ % (15%@ R(D*) = 0.254)

Preliminary systematic uncertainties • Each source of the uncertainty changes the PDF shape, consequently modify the

- fitted R(D*) value
 - Generate PDFs by fluctuating one of the uncertainty sources • Fitting the fluctuated PDFs to the nominal pseudo data (un-fluctuated PDF) • Repeating the fit by 1000 times (fluctuate PDFs follow Gaussian) to obtain the

 - $\Delta R(D^*)$
 - Asymmetric errors $\mu + \sigma$ and $\mu \sigma$ from fitting $\Delta R(D^*)$ distribution as systematic uncertainties

Source

Statistical uncertainty

MC statistics

 $B \rightarrow D^{**}lv$ branching ratios

+0.046	+18.1%
-0.043	-17.0%
+0.010	+4.1%
-0.007	-2.7%
+0.012	+2.7%
-0.010	-1.9%

Statistical uncertainty dominated

Expected sensitivity of R(D*) at Belle II

Data sample in ab^{-1}

Summary and prospects

• $R(D^*)$ shows 3.2 σ deviation between experimental average value and standard model prediction

Hint of Lepton Flavor Universality Violation

•Measurement of R(D*) with hadronic tagging based on 189 fb⁻¹ Belle II data

- Established the analysis framework
- Selection optimization improve FOM by 35% compare to Belle '15 analysis • Expected statistical uncertainty is +18/-17% at 189 fb⁻¹
- •Evaluated most of the systematic uncertainty, <- statistical uncertainty dominated with 189 fb⁻¹ data 10
- First R(D*) measurement at Belle II using 189 fb⁻¹ data-set targeting the end of spring 2023

Backup

Reconstruction selections

	B _{tag}	$\mathcal{P}_{B_{tag}} > 0.001 \text{ and } M_{bc,B_{tag}} > 5.27 \text{ GeV}/c^2 \text{ and } -0$		
good track		$dr < 2.0$ and $ dz < 4.0$ and $p_t > 0.1$ GeV/ c		
# of tracks		The number of good tracks > 4		
π^+ , K^+ from D		[good track] and nCDCHits $>$ 20 and $\mathcal{P}_{K}^{\mathrm{binary}} >$		
	π^0	pi0:eff40_May2020 and γ : clusterTiming < 200		
K_S^0		KS0:merged and significanceOfDistance > 3 (before		
D		$1.78 < M_D < 1.92 { m GeV}/c^2$		
	$\gamma_{\rm low}$	<pre>gamma:eff40_May2020 and clusterTiming < 20</pre>		
$\pi^0_{ m slow}$		pi0:eff50_May2020 and γ : clusterTiming < 200		
$\pi^+_{ m slow}$		dr < 2.0 and $ dz < 4.0$ and $p > 0.05$ GeV/ c		
D^*		$0.130 < \Delta M_{D^*} < 0.170 \; {\rm GeV}/c^2 \; (0.100 < \Delta M_{D^*} < 0.100 \; {\rm GeV}/c^2 \;$		
e, μ		[good track] and $\mathcal{P}^{ m global}_{\mu} > 0.9$, $\mathcal{P}^{ m global}_{e} > 0.9$		
		 treeFit('B0(B+):sig', conf_level=0.0, ipConstrations updateAllDaughters=True, massConstaint=[K_S0, pice 		
B _{sig}	vertex iit	 treeFit('B0(B+):sig', conf_level=-1.0, ipConstration updateAllDaughters=True, massConstaint=[D*0, D*+; 		
	Charged	$ dr < 5.0$ and $ dz < 20.0$ and $p_t > 0.1$ GeV/c and		
ROE	Neutral	<pre>gamma:eff40_May2020 and clusterTiming < 20</pre>		
		roeCharge == 0 and ROE_nTracks == 0		

 $0.15 < \Delta E_{B_{\text{tag}}} < 0.1 \text{ GeV}$

> 0.1,
$$\mathcal{P}^{\mathrm{binary}}_{\pi} > 0.1$$

0 ns

ore B_{sig} vertex fit)

0 ns

) ns

 $0.190 \text{ GeV}/c^2$) for $D^{*+}(D^{*0})$

int=False, 0], path=path)

aint=False, D0, D+, K_S0, pi0], path=path)

◀----

d nCDCHits > 0

0 ns

Tag B meson

Tracks

Hadrons

Neutrals

Leptons

Constraint $D^{(*)}$ daughter's masses to improve $D^{(*)}$ selections

Constraint $D^{(*)}$ masses additionally to improve $M_{\rm miss}^2$ resolution

Vertex

Neutrals of Rest of event

Belle II - LHCb comparison

 $\phi_{_3}$ [deg] Uncertainty

