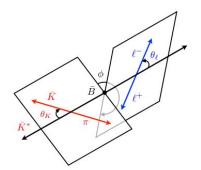


S. Glazov, DESY, Tsukuba 10 Feb 2023



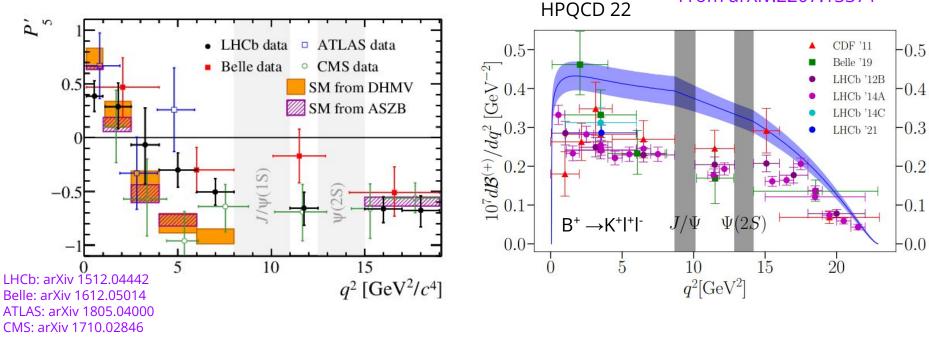
- b→s FCNC transitions are forbidden in SM at the tree level; occur via box and penguin diagrams.
- Resonant tree-level charmonium production (e.g. $B \rightarrow KJ/\Psi$) can be isolated by the invariant mass of the lepton pair.
- O(10%) accurate predictions for the q² range outside resonances.

Angular distributions in $B^* \rightarrow K^* l^+ l^-$

 $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4} (1-F_L)\sin^2\theta_K\cos2\theta_\ell \right]$

 $32\pi \left[4^{(1-1)}L^{(2-1)}L^{$

+ $S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$,

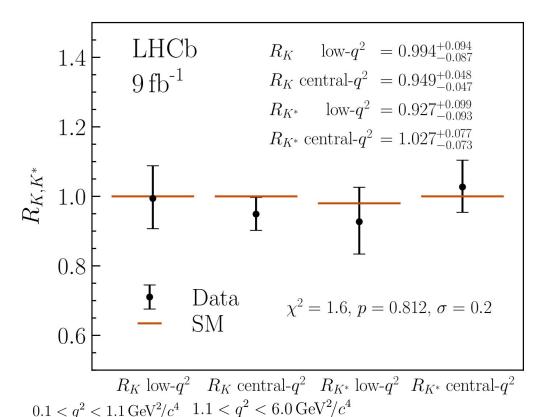

Redefinition of parameters: $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$ Folding of variables:

 $P'_{4}, S_{4}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases} \qquad P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2. \end{cases}$

For small q^2 , P'_5 is connected to semi-leptonic operators Q_9 and Q_{10} .

$$P'_{5} \simeq \frac{\operatorname{Re}\left(C_{10}^{*}C_{9,\perp} + C_{9,\parallel}^{*}C_{10}\right)}{\sqrt{\left(|C_{9,\perp}|^{2} + |C_{10}|^{2}\right)\left(|C_{9,\parallel}|^{2} + |C_{10}|^{2}\right)}},$$

Tensions with the SM

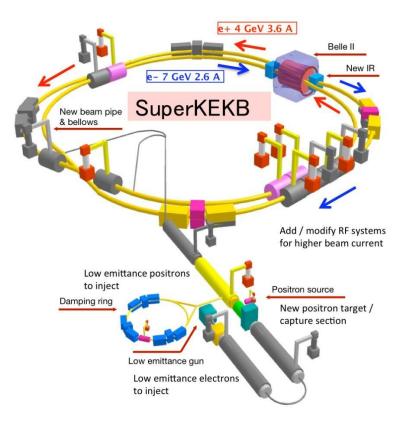


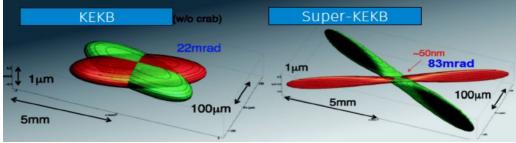
Several tensions are observed between experimental data and theoretical predictions such as partial branching fraction and angular coefficient P'_5 for $B \rightarrow K^*I^+I^-$. Some of the tensions are experiment-dependent.

From arXiv:2207.13371

arXiv:2212.09153

Lepton universality in $B \rightarrow K^{(*)}l^+l^-$: LHCb


$$R_{K} = \frac{B(B^{\pm} \to K^{\pm} \mu^{+} \mu^{-})}{B(B^{\pm} \to K^{\pm} e^{+} e^{-})}$$

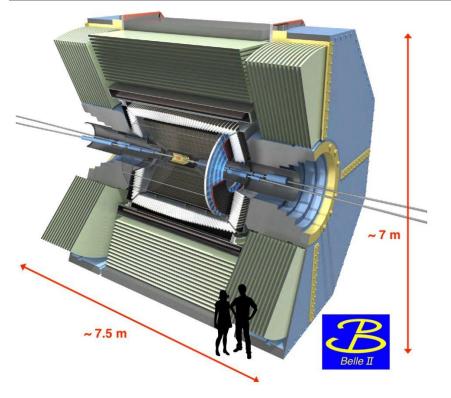

Recent result from LHCb is in excellent agreement with the SM expectations.

The uncertainties reach **10%** to **5%** level.

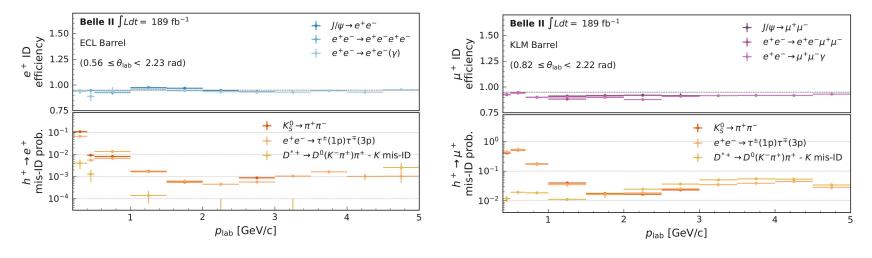
→most accurate measurement at the moment, sets the precision target.

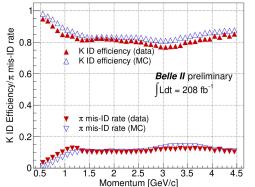
SuperKEKB

- Nano-beam collision scheme leading to highest specific luminosity, employed for the first time
- First physics data from 2018
- Design luminosity of 6.5 x 10³⁵cm⁻²s⁻¹
- Achieved world-record peak luminosity of 4.7 x 10³⁴ cm⁻² s⁻¹
- Expected total integrated luminosity of 50 ab⁻¹, (x50 Belle), to be collected over decade.
- Collected currently: 0.4 ab⁻¹


Future of high-intensity e⁺e⁻ colliders relies on success of SuperKEKB

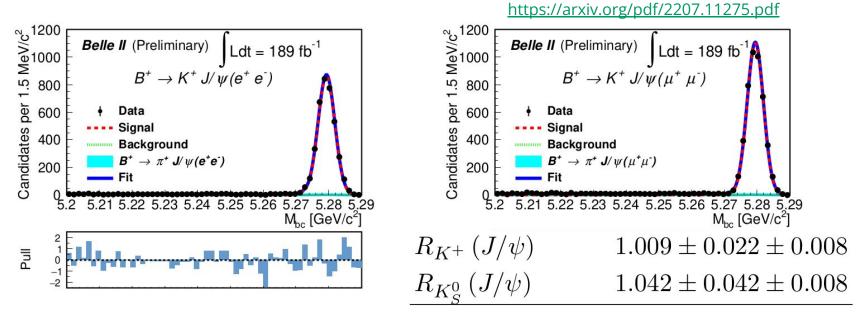
Belle II detector


- Nearly 4π detector
- Tracking, PID, and photon reconstruction capabilities
- Similar performance for electrons and muons
- Well-suited to measure decays with missing energy, π^0 in the final state, inclusive measurements
- Comparable or better performance vs its predecessor Belle.

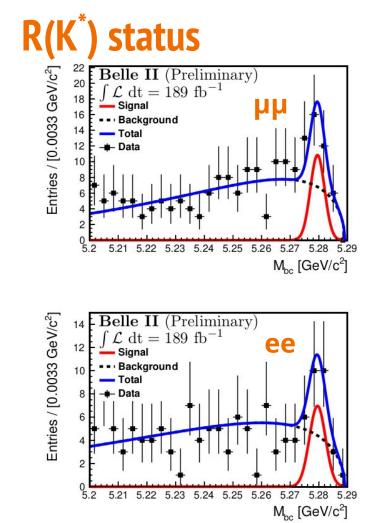


Collected at Y(4S):	360 fb⁻¹, about	0.4 x 10 ⁹ BB
Expected:	50 ab⁻¹, about	50 x 10 ⁹ BB

Key experimental inputs for measurement of $B \rightarrow K^{(*)}$ ll


Main ingredients for accurate $\mathbf{B} \rightarrow \mathbf{K}^{(*)}\mathbf{I}^{+}\mathbf{I}^{-}$ measurements are efficient tracking, high momentum resolution, good lepton ID and K- π separation.

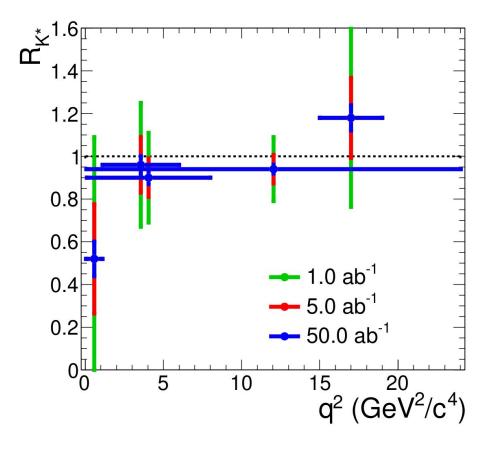
Reconstruction methods at Belle II



- The second "tag" B in $Y(4S) \rightarrow BB$ decays can be used to constrain kinematics, reduce continuum background.
- Explicit reconstruction of the tag in hadronic or semileptonic modes and inclusive tagging provide different working points in terms of efficiency/purity.
- Fully reconstructed modes usually do not require hadronic/semileptonic tagging

Towards R(K): measurements of $B^{+,0} \rightarrow K^{+,0} J/\psi(ll)$

- Precision measurement of branching fractions, $R_{\rm K}(J/\psi)$ in neutral and charged channel
- Systematic uncertainties (lepton ID) below 1%.
- Check of performance, useful normalization channel.


- $B^{0,+} \rightarrow K^{*0,+}II$ decays reconstructed (with veto on charmonium, low q² resonances)
- Similar performance for µµ and ee channels. Efficiency between 6-16%

$$\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6},$$

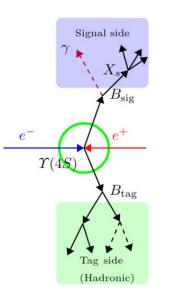
$$\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6},$$

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}.$$

• Considering smaller luminosity, similar performance to Belle (PRL 126, 161801 (2021)).

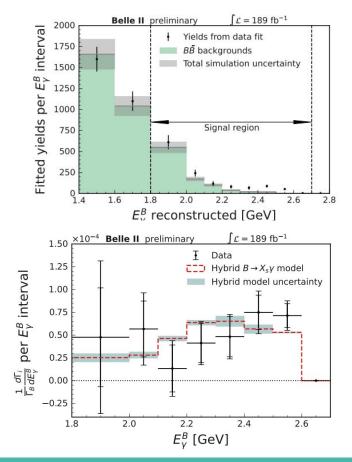
Based on Belle PRL 126, 161801 (2021)

R(K^(*)) perspective

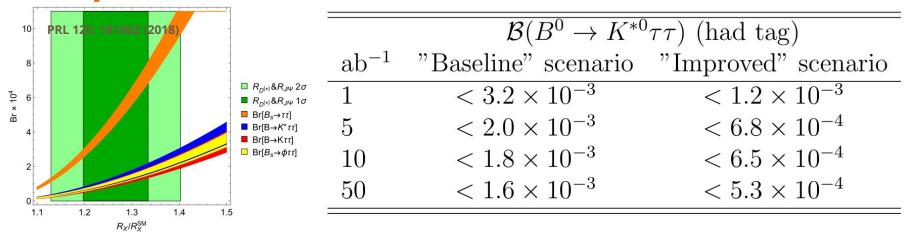

- Belle and Belle II performance for R(K) and R(K*) is similar
- Uncertainties are dominated by statistics
- Scaling uncertainties to different luminosities, about
 3% precision is possible for q² bin [1-6] GeV²/c⁴ for 50 ab⁻¹ data sample.

Perspectives for $B \rightarrow Xs l^+l^-$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%

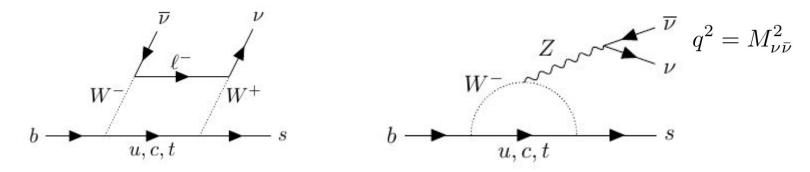

- Belle II is ideally suited to perform inclusive measurements
- Can be performed as "sum of exclusive" branching fractions, **K+nπ**
- Already with **5 ab⁻¹ 10%** accuracy is expected
- Other observables include FB and CP asymmetries

Measurement of $B \rightarrow Xs$ gamma with hadronic tag



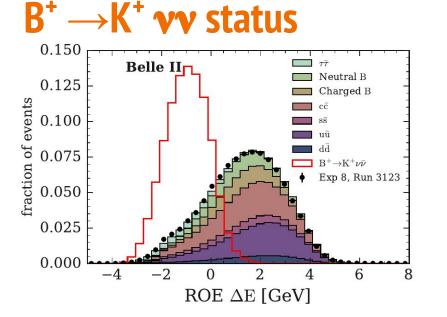
- Hadronic tagging allows to:
 - Suppress background
 - Precisely define Xs
 - Accurately reconstruct **E*****y**
- Measurement differential in
 E*y, high purity for high E*y
- Unfolded result has uncertainties comparable to other hadronic tag measurements, agrees well with the expectations

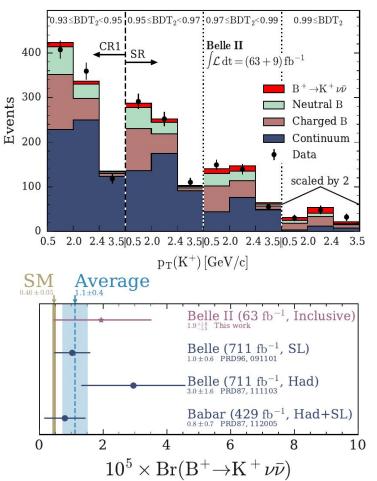
E_{γ}^{B} threshold [GeV]	$\mathcal{B}(B \to X_s \gamma) \ [10^{-4}]$		
1.8	3.54 ± 0.78 (stat.) ± 0.83 (syst.)		
2.0	3.06 ± 0.56 (stat.) ± 0.47 (syst.)		
2.1	2.49 ± 0.46 (stat.) ± 0.35 (syst.)		



Prospects for $B^0 \rightarrow K^{*0} TT$

- $B \rightarrow K^{(*)}\tau\tau$ decays are complementary to $B \rightarrow K^{(*)}II$ and highly sensitive to NP models. B_{SM} is around 10⁻⁷, while the current limit for $B \rightarrow K^*\tau\tau$ is < 2 10⁻³ at 90% CL [arXiv:2110.03871].
- "Baseline" sensitivity projections based on hadronic tag and leptonic decays of τ,
 "improved" consider other decay modes which improve sensitivity.
- Further improvements possible with $B^+ \rightarrow K^{*+}\tau\tau$ channel.
- Similar case for $B^+ \rightarrow K^+ \tau \tau$


$B \longrightarrow K \, \nu \nu \, SM$ predictions


$$\frac{d\mathrm{BR}(B^+ \to K^+ \nu \bar{\nu})}{dq^2} = \tau_{B^+} 3|N|^2 \frac{X_t^2}{s_w^4} \rho_K(q^2) \qquad N = V_{tb} V_{ts}^* \frac{G_F \alpha}{16\pi^2} \sqrt{\frac{m_B}{3\pi}}$$
$$\mathrm{BR}_{\mathrm{SM}} = (5.67 \pm 0.38) \times 10^{-6} \quad [\mathrm{arXiv:} 2207.13371]$$

- The $B \rightarrow K^{(*)} \nu \nu$ processes are known with high accuracy in the SM
- Extensions beyond SM may lead to O(50%) rate increase (often via v_{τ})
- Very challenging experimentally, not yet observed

Phys.Rev.Lett. 127 (2021) 18, 181802

- Analysis using inclusive tag, exploiting distinct topological features of the decay.
- Competitive performance with a small
 63 fb⁻¹ data sample

$\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{vv}$ perspectives

Uncertainties on B(measured)/B(SM)

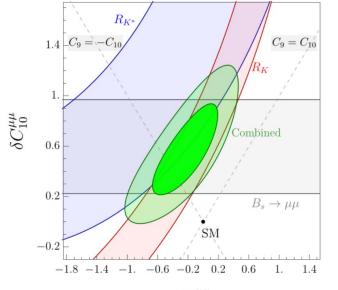
Decay	$1\mathrm{ab}^{-1}$	$5\mathrm{ab}^{-1}$	$10\mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55(0.37)	0.28(0.19)	0.21(0.14)	0.11(0.08)
$B^0 \to K^0_{\rm S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05(0.70)	0.59(0.40)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	$0.83 \ (0.59)$	$0.53 \ (0.38)$
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	$0.49\ (0.33)$	0.34~(0.23)

- Projections based on published analysis plus updated MC studies
- Baseline (improved) scenarios considers improved background normalization uncertainty (improved signal efficiency) by using additional variables, combining tagging methods
- Can establish $B^+ \rightarrow K^+ \nu \nu$ decay at 5 sigma with 5 ab⁻¹ sample

Belle II upgrade

Observable	2022	Belle-II	Belle-II	Belle-II
	Belle(II),	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	250 ab^{-1}
	BaBar			
$\sin 2\beta/\phi_1$	0.03	0.012	0.005	0.002
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	0.8°
α/ϕ_2 (WA)	4°	2°	0.6°	0.3°
$ V_{ub} $ (Exclusive)	4.5%	2%	1%	< 1%
$S_{CP}(B \to \eta' K_{\rm S}^0)$	0.08	0.03	0.015	0.007
$A_{CP}(B \to \pi^0 K_{\rm S}^0)$	0.15	0.07	0.025	0.018
$S_{CP}(B \to K^{*0}\gamma)$	0.32	0.11	0.035	0.015
$R(B \to K^* \ell^+ \ell^-)^\dagger$	0.26	0.09	0.03	0.01
$R(B \to D^* \tau \nu)$	0.018	0.009	0.0045	< 0.003
$R(B \to D \tau \nu)$	0.034	0.016	0.008	< 0.003
$\mathcal{B}(B \to \tau \nu)$	24%	9%	4%	2%
$B(B \to K^* \nu \bar{\nu})$	17 <u></u> 1	25%	9%	4%
$\mathcal{B}(\tau \to \mu \gamma)$ UL	42×10^{-9}	22×10^{-9}	6.9×10^{-9}	$3.1 imes 10^{-9}$
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	21×10^{-9}	$3.6 imes 10^{-9}$	0.36×10^{-9}	$0.073 \times$
				10^{-9}

- Near- and long-term Belle II upgrade is under consideration
- Benchmark studies assuming x5 data sample (250 x 10⁹ BB events)
- Significant increase of sensitivity for key channels
- Requirements to SuperKEKB accelerator need to be investigated

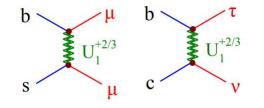


- Success of SuperKEKB is essential for future high-luminosity e⁺e⁻ colliders.
- R(K^(*)) from Belle II becomes competitive with larger data samples.
- $B \rightarrow K \nu \nu$ should be established by Belle II, if it is consistent with SM
- $B \rightarrow K^{(*)} \tau \tau$ has a lot of potential to search for new physics.
- Long-term upgrade of Belle II is under consideration, with an option to x5 the Belle II data sample.

BACKUP

BSM models to explain anomalies.

https://arxiv.org/pdf/2103.12504.pdf https://arxiv.org/pdf/2110.13270.pdf



$$\begin{split} \mathcal{L}_{\rm nc} &\supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i \,\mathcal{O}_i + \text{h.c.} \,, \\ \mathcal{O}_9^{\ell_1 \ell_2} &= \frac{e^2}{(4\pi)^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell}_1 \gamma^\mu \ell_2) \,, \\ \mathcal{O}_{10}^{\ell_1 \ell_2} &= \frac{e^2}{(4\pi)^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell}_1 \gamma^\mu \gamma^5 \ell_2) \,, \end{split}$$

EFT analysis suggests modification of C₁₀ and C₀ effective couplings

- A number of models which can generate these modifications: W', Z', LP
- Some models can prediction both R_K and R_D anomalies at the same time, e.g. vector U₁ leptoquark
- Many but not all models predict large effects for loop decays involving taus, sometimes with LFV, e.g. $B \rightarrow K\mu\tau$
- UV completion requires presence of extra particles at high energies.

