Recent Bele

versality and

on behalf of the Belle II collaboration

The Dark Side of The Universe, Sydney 5-9 December 2022

THE UNIVERSITY OF MELBOURNE

results related to lepton-flavor

Marco Milesi

(Prelude) Anomalies in lepton flavour universality tests at flavour experiments

• The Standard Model postulates that electroweak couplings of gauge bosons (Z, W^{\pm}) to leptons (e, μ, τ) are independent of lepton flavour \rightarrow Lepton Flavour Universality (LFU)

Lepton Flavour Universality in the Standard Model

• Observation of LFU violation would clearly indicate existence of physics beyond the Standard Model.

• Semileptonic B decays via $b \to c$ tree-level transition \to excellent probe to test LFU for all three lepton generations.

• Branching fractions of *exclusive* decays to charmed mesons $B \to D^{(*)} \ell \nu$ calculated in the SM with high precision, $\mathcal{O}(0.1\%)$.

[*] https://indico.cern.ch/event/1187939/

LFU anomalies in $b \rightarrow c \tau \nu$ transitions

• Rate of $b \rightarrow c \tau \nu$ transitions may be enhanced wrt. $b \rightarrow c(e, \mu)\nu$ in several beyond-SM scenarios.

• Combined measurements of the ratio of branching fractions $R(D^{(*)})$, by Belle, BaBar, LHCb presently in tension with the SM at $\approx 3\sigma$.

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$$

- (e.g. $B^0 \to K^{*0} \mu^+ \mu^-$ [**]) and $R(K^*)$ [***] at LHCb.

Where does Belle II stand?

The SuperKEKB e^+e^- collider at KEK, Japan, and the Belle II detector

Belle: ≈ 700 fb⁻¹).

The Belle II detector overview

Time of Propagation (TOP) 20 mm thick quartz radiators for time of flight and Cherenkov PID

 K/π identification (1.8% π

fake rate $@ \epsilon_K = 90\%)$

Pixel Vertex Detector (PXD) 2 layer pixel detector (8MP) DEPFET technology

Silicon Vertex Detector (SVD) 4 layer double-sided strips 20–50 ns shaping time

Central Drift Chamber (CDC) proportional wire drift chamber 15k sense wires in 56 layers

μ identification (2-1% π , K fake rate @ $\epsilon_{\mu} = 95\%$)

K_Land μ system (KLM) RPC and Scintillator+SiPM between iron plates

Magnetic Field 1.5 T superconducting magnet

EM Calorimeter (ECL) 8k CsI Crystals, 16 X₀, PMT/APD readout

 γ reconstruction ($\langle \sigma_{\pi^0} \rangle$ resolution: ≈ 6 MeV), *e* identification (1-0.01%) π, K fake rate @ $\epsilon_e = 95\%$

Current Belle II tests of lepton flavour universality: tree-level $(b \rightarrow c \ell \nu)$

• Test LFU with *inclusive* semileptonic B decays by measured b

✓ Tag one B (from $\Upsilon(4S) \rightarrow B\overline{B}$) in fully hadronic decay purity and constrain final-state kinematics.

✓ Rely mostly on precise reconstruction of the "signal side lepton. Only minimal selection applied on the decay products of the (complex) hadronic system X.

Backgrounds \rightarrow continuum $e^+e^- \rightarrow q\bar{q} \ (q \in \{u, d, s, c\})$, hadrons faking leptons, secondary leptons from $b \rightarrow c \rightarrow (\ell, s)$ cascades.

$$R(X_{e/\mu})$$

uring the ratio:
$$R(X_{e/\mu}) = \frac{\mathcal{B}(B \to Xe\nu)}{\mathcal{B}(B \to X\mu\nu)}$$

ys to enhance @ICHEP 2022, **189 fb-1**
de''
Hadronic Tag
 π^+ D^{+*} π^+ $e^ Y(4S)$ B^0 D^0 K^-

$R(X_{e/\mu})$ - Analysis strategy

BDT classifier.

$R(X_{e/\mu})$ - Lepton identification

- \mathscr{L}_{μ} $PID_{\mu} = -$ • Muon ID via likelihood ratio: $\overline{\sum_{i} \mathscr{L}_{i}},$
- Electron ID via BDT with calorimetric shower shapes [*].
 - $h(\pi, K) \rightarrow e$ mis-ID probability reduced by > x2 wrt. likelihood ratio.
- measured to a precision of $\mathcal{O}(0.1 2\%)$ for both lepton flavours.

 $D = \{ central drift chamber (dE/dx), Cherenkov+ToP, \}$ EM calorimeter (E/p), muon detector}

[*] M. M., J. Tan, P. Urquijo, EPJ Web Conf. 245 06023 (2020).

• Efficiencies calibrated in data with several, independent control samples. Corrections to simulation close to unity,

• Electron and muon channels are fitted simultaneously in 10 $p_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! }$ bins each via maximum likelihood template fit, with $B \to X \ell \nu$ yields free floating parameters.

$R(X_{e/u})$ - Signal extraction

• $B \rightarrow X\ell\nu : X = D, D^*, D^{**}, \text{non}$ resonant hadronic decays.

 Continuum background normalisation constrained with 18 fb^{-1} of off-resonance data.

 Normalisation of fakes and secondaries constrained in control regions with "wrong lepton charge" $(\Upsilon(4S) \rightarrow B_{tag}^{+,0}, B_{sig} \rightarrow X\ell^+\nu + c.c.)$

$$R(X_{e/\mu}) = \frac{\epsilon_{X\mu\nu} N_{Xe\nu}}{\epsilon_{Xe\nu} N_{X\mu\nu}}$$

- Compatible with the Standard Model prediction [*] of $R(X_{e/\mu})_{SM} = 1.006 \pm 0.001$ within 1.2σ .

This is the most precise LFU test with semileptonic *B* decays to date.

$$R(X_{e/\mu}) = 1.033 \pm 0.010 \text{ (stat.)} \pm 0.020 \text{ (sys.)}$$

Theory uncertainties largely cancel in ratio.

Precision limited by systematic uncertainties related to lepton ID.

• Also consistent with Belle result [**] using $B \to D^* \ell \nu$ decays: $R(D^*_{e/\mu}) = 1.01 \pm 0.01$ (stat.) ± 0.03 (sys.)

[*] M. Rahimi, K. Vos, JHEP 11, 007 (2022) [**] Phys. Rev. D 100, 052007 (2019), **711 fb**⁻¹

Prospects for Belle II

• Alongside $R(D^{(*)})$, Belle II has unique capability for an *inclusive* measurement: R(X).

• Complementary test of LFU w/ semileptonic B decays, no published results from Belle and BaBar.

Marco Milesi, DSU2022

• With current Belle II dataset of 363 fb⁻¹, the expected precision of both $R(X), R(D^{(*)})$ is of order 10-20%.

• New results for both analyses are highly anticipated.

 $B^{\text{-}}$

Belle II lepton flavour violation searches with tau lepton decays

- SuperKEKB is (also) a τ -factory! $\rightarrow \approx 10^6 \ e^+e^-$
- Abundance of τ lepton pairs can be exploited as a high-precision probe for both:

prohibited (or strongly suppressed) in the SM.

1) LFU tests.

LF(U)V at Belle II with τ leptons

$$\rightarrow \tau^+ \tau^- \text{ pairs/fb}^{-1} \simeq e^+ e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B} \text{ pairs/fb}^{-1}$$

- Many models predict LFV τ decays with branching ratios of $\mathcal{O}(10^{-8} 10^{-10})$ [*].

[*] S. Banerjee et al., arXiv:2203.14919v2 (2022)

LFV in τ decays

• Any observation of lepton flavour (or number)-violating (LFV) decays \rightarrow direct evidence of beyond-SM physics.

• Plenty (>52) of channels accessible at Belle II through dedicated low multiplicity triggers (c.f. <u>Chia-Ling's talk</u>).

LFV in τ decays

Marco Milesi, DSU2022

• Search for an *invisible* (pseudo)scalar light boson α with $m_{\alpha} \in (0,1.6)$ GeV/c².

$\tau \rightarrow \ell \alpha$ (invisible), $\ell \in \{e, \mu\}$ - Analysis strategy

arXiv:2212.03634, to be su to PRL , **62.8 fb**⁻¹

h	
υ.	

• Reducible backgrounds ($\tau \to \pi \nu$, continuum, $ee\ell\ell$, eehh) suppressed via selection optimised on $\tau \to \ell \nu_\ell \nu_\tau$ \rightarrow 96% (e), 92% (μ) purity w/ 9.1-17.9% signal efficiency (m_{α} -dependent).

• Partial cancellation of lepton ID uncertainties in branching fraction ratio due to differing kinematics.

$\tau \rightarrow \ell \alpha$ (invisible) - Signal extraction

- Limits are between 2 and 14 times lower than ARGUS, depending on m_{α} and lepton flavour.
- Sensitivity degraded by 35% due to systematics (mostly from lepton ID).

$\tau \rightarrow \ell \alpha$ (invisible) - Results

• No significant signal is observed \rightarrow derived 95% CL upper limits on $\frac{\mathscr{B}(\tau \rightarrow \ell \alpha)}{\mathscr{B}(\tau \rightarrow \ell \nu_{\ell} \nu_{\tau})}$ (using CLs method).

(Preparing for) Belle II tests of LFU: loop-induced $(b \rightarrow s\ell\ell)$

• Belle II LFU tests with rare electroweak penguins ($b \rightarrow s\ell\ell$) will be competitive w/ LHCb with a dataset of a few ab^{-1}

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$
$R_K \; ([1.0, 6.0] { m GeV^2})$	28%	11%
$R_K \ (> 14.4 { m GeV^2})$	30%	12%
$R_{K^*}~([1.0, 6.0]{ m GeV^2})$	26%	10%
$R_{K^*} \ (> 14.4 { m GeV^2})$	24%	9.2%
$R_{X_s}~([1.0, 6.0]{ m GeV^2})$	32%	12%
$R_{X_s} \ (> 14.4 { m GeV^2})$	28%	11%

The Belle II Physics Book, PTEP 2020 (2020) 2, 029201 (erratum)

• Measure the $r_{J/\psi}^{K}$ ratio for decays $B^{+}(B^{0}) \rightarrow J/\psi(\ell^{+}\ell^{-})$

Belle II arXiv: 2207.11275, **189 fb**-1

 $r_{J/\psi}^{K} = \frac{\mathscr{B}(B^{+} \to J/\psi(\to \mu\mu)K)}{\mathscr{B}(B^{+} \to J/\psi(\to ee)K)} = \frac{N_{J/\psi(\mu\mu)K}}{N_{J/\psi(ee)K}} \cdot \frac{\epsilon_{J/\psi(ee)K}}{\epsilon_{J/\psi(\mu\mu)K}}$

• Fully resolved final state(s), very pure selection (90-95%) via mass cuts on intermediate resonances $(J/\psi, K_S^0)$ and PID criteria on leptons and charged kaons.

• Branching fractions and $r_{J/\psi}^{K}$ extracted from 2D unbinned ML fit to $\Delta E, M_{bc}$ distributions.

Preparing for R(K): $r_{J/\psi}^{K}$ in $B \rightarrow J/\psi K$ decays

$$-K^{+}(K_{S}^{0})$$
 [+ c.c.]

[*] Belle, JHEP 03 (2021) 105, **711 fb**-1

:.)±0.01
:.)±0.01
Л.
vrt. B

Preparing for $R(K^*)$: rediscovery of $B \to K^*(892)\ell^+\ell^-$

3) $K^{*+} \rightarrow K^{+}\pi^{0}$ [+ c.c.]

• Measure the branching fraction of $B \to K^*(892)\ell^+\ell^-$ in three K^* decay modes: 1) $K^{*0} \to K^+\pi^-$, 2) $K^{*+} \to K_S^0\pi^+$,

Belle II arXiv: 2206.05946, **189 fb**-1

- Use BDT based on event shape, kinematics and vertexing to reject continuum and BB backgrounds \rightarrow 98% bkg. rej. @ 65-70% sig. eff.
- 2D unbinned ML fit to $\Delta E, M_{bc}$ distributions.
- Results compatible w/ world averages (PDG):

$$\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6},$$

$$\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6},$$

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}.$$

Summary and conclusions

- Recent, world-leading results of Belle II were showcased:
 - Most precise LFU test with inclusive semileptonic B decays $(R(X_{e/u}))$.
 - Most stringent upper limits on invisible scalar boson production in LFV $\tau \rightarrow \ell \alpha$ decays.
- Exciting new results for LF(U)V ahead for Belle II, with both:
 - Increased dataset size (critical for $b \to s\ell\ell$).
 - Ongoing improvements in experimental techniques for lepton identification to reduce systematic uncertainties.

Backup material

 $\mathscr{B}(B \to X_c \tau \nu)_{SM} = (2.45 \pm 0.10) \%$ Phys. Rev. D 90(3), 034021 (2014) $R(X_c)_{SM} = 0.223 \pm 0.004$ Phys. Rev. D 92, 054018 (2015)

 $\langle \mathscr{B} \rangle = (2.41 \pm 0.23) \%$, quoted as the average rate of an admixture of b-flavoured hadrons to decay semileptonically to $X\tau$

Beam-energy constrained variables @ B-factories

Fig. 42: ΔE and $M_{\rm bc}$ distributions for $B^+ \to [D^0 \to K^- \pi^+(\pi^0)]\pi^+$ simulated events in Belle II (*blue*) and comparison with Belle (*black*). The red curve shows the distribution for continuum background. Beam background is included in the simulation.

31