Semileptonic and Leptonic B Physics at Belle II

Priyanka Cheema (University of Sydney)

On behalf of the Belle II collaboration

EDSU Conference - November 8, 2022

RECONSTRUCTION STRATEGIES

Energies of e^+ , e^- beams are tuned to produce $\Upsilon(4S)
ightarrow B\overline{B}$

Tagged vs Untagged

Exclusive vs Inclusive: depends on reconstruction of B_{sig}

- Exclusive B_{sig} is reconstructed in a specific decay mode
- + Inclusive $B_{\rm sig}$ reconstructed as many modes e.g. $B_{\rm sig} \to X \ell \nu$
- ightarrow different approaches are complementary and ideally should agree

FEI: tag is reconstructed using Full Event Interpretation algorithm [Comput. Softw. Big Sci. 3, 6 (2019)] + more detail in backup slides

MOTIVATION - THE CKM MATRIX

$$egin{bmatrix} d' \ s' \ b' \end{bmatrix} = egin{bmatrix} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix}$$

- Matrix must be unitary \rightarrow imposes constraint to test SM
- Tension between exclusive (orange band) and inclusive (blue band)

<u>Precision</u> from semileptonic decays. Typical modes studied:

* V_{ub} - $b \rightarrow u$ transitions

e.g. $B \rightarrow X_u \ell \nu, B \rightarrow \rho \ell \nu, B \rightarrow \pi \ell \nu$ tagged/untagged

* V_{cb} - $b \rightarrow c$ transitions

e.g. $B \to X_c \ell \nu$, $B \to D^* \ell \nu$, $B \to D \ell \nu$ untagged (tagged in backup)

TAGGED $B ightarrow \pi \ell u$ (arXiv:2206.08102)

 $B_{sig} - B^0 \rightarrow \pi^- e^+ \nu_e$ and $B^+ \rightarrow \pi^0 e^+ \nu_e$ / B_{tag} - hadronic tag using FEI Fit to M_{miss}^2 in 3 bins of q^2 : [0, 8] [8, 16] [16, 26.4] GeV²

$$M_{
m miss}^2 = (p_{e^+e^-} - p_{B_{
m tag}} - p_e - p_{\pi})^2 \ , \ q^2 = (p_{e^+e^-} - p_{B_{
m tag}} - p_{\pi})^2$$

Results for B⁰ mode

 χ^2 fit of diff. decay width using BCL parametrisation [Phys. Rev. D 79, 013008] of form factors and FNAL/MILC lattice QCD constraints [Phys. Rev. D 92, 014024]

 $|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$ c.f. PDG: $(3.67 \pm 0.15) \times 10^{-3}$

 \rightarrow precision will improve with larger data set

UNTAGGED $B ightarrow \pi \ell u$ (arXiv:2210.04224)

Reconstruct $B^0 \to \pi^- \ell^+ \nu$ ($\ell = e, \mu$) with no B_{tag} reconstructed (untagged) Signal extracted by 2D fit to M_{bc} and ΔE

$$M_{
m bc} = \sqrt{E_{
m beam}^{*2} - p_B^{*2}}$$
 $\Delta E = E_B^* - E_{
m beam}^*$

 $M_{
m bc}$ is the beam-energy constrained mass ($E_{
m beam}^*$ substituted for $E_{
m B}$) ΔE is the difference of true and reconstructed energy of the *B* <u>Difficulties:</u> suppressing continuum and peaking backgrounds from other semileptonic *B* decays

Multiple BDTs used to suppress background components

UNTAGGED $B ightarrow \pi \ell u$ (arXiv:2210.04224)

Perform fit in 6 q² bins: [0, 4] [4, 8] [8, 12] [12, 16] [16, 20] [20, 26.4] GeV²

$$q^2 = (q_B - q_\pi)^2$$

• Main components: signal, $X_u \ell \nu$, $X_c \ell \nu$, continuum

Differential decay width dependent on $|V_{ub}|$ and form factors:

$$rac{d\Gamma}{dq^2} \propto |V_{ub}|^2 |f_+(q^2)|^2$$

BCL parametrisation [Phys. Rev. D 79, 013008] of form factors and FNAL/MILC lattice QCD constraints [Phys. Rev. D 92, 014024] used to extract $|V_{ub}|$ $|V_{ub}| = (3.54 \pm 0.12_{stat} \pm 0.15_{sys} \pm 0.16_{th}) \times 10^{-3}$ c.f. PDG: $(3.67 \pm 0.15) \times 10^{-3}$

UNTAGGED $B ightarrow D\ell u$ (arXiv:2210.13143)

Reconstruct $B^+ \to \overline{D}{}^0 \ell^+ \nu$ and $B^0 \to D^- \ell^+ \nu$ with $D \to K \pi(\pi)$

Signal extracted from 1D fit to $\cos \theta_{\rm BY}$ (between -1 and 1 for signal):

$$\cos \theta_{\rm BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

BGL parametrisation (N=3) [Phys. Rev. D 56, 6895] of form factor and FNAL/MILC, HPQCD [Phys. Rev. D 93, 119906] lattice QCD constraints used to extract $|V_{cb}|$ from 10 bins of w

 $|V_{cb}| = (38.53 \pm 1.15) \times 10^{-3}$ c.f. PDG: $(39.14 \pm 0.92_{exp} \pm 0.36_{th}) \times 10^{-3}$

$R(X_{e/\mu})$ (to be submitted to PRL)

New lepton flavour universality test for light leptons

$$R(X_{e/\mu}) = \frac{\mathcal{B}(B \to Xe\nu)}{\mathcal{B}(B \to X\mu\nu)}$$

Inclusive reconstruction: $B^+/B^0 \rightarrow X\ell\nu$ with hadronic tag using FEI

Fit templates for <u>signal</u>, <u>continuum</u> and <u>background</u> (incorrect charge sideband)

Simultaneous binned likelihood fits for $e,\,\mu$ modes in 10 bins of p_ℓ^*

See dedicated ICHEP 2022 talk

 $R(X_{e/\mu})^{p_{\ell}^* > 1.3 \text{ GeV}} = 1.033 \pm 0.010_{\text{stat}} \pm 0.020_{\text{sys}}$

Most precise BF based LFU test

 \rightarrow compatible with Belle result for $R(D^*_{e/\mu})$ [Phys. Rev. D100, 052007 (2019)]

 \rightarrow paves the way for $R(X_{\tau/\ell})$

SUMMARY

First measurements of $\left|V_{ub}\right|$ and $\left|V_{cb}\right|$ from Belle II

- Key to understanding exclusive-inclusive tension
- Important in testing CKM parameters in the context of SM predictions

World-leading BF based LFU test with $R(X_{e/\mu})$ result

• Important test for SM and probe beyond the SM physics

Other Semileptonic Results

Measurement of $\mathcal{B}(B \to X_c \ell \nu)$ [arXiv: 2111.09405]

Measuring q^2 moments from $B \rightarrow X_c \ell \nu$ [arXiv: 2205.06372]

Main Ongoing Leptonic Analyses

- ${\rm B} \to \mu \nu \; {\rm w}/$ semileptonic tag
- $B
 ightarrow \mu
 u$ untagged
- ${\rm B} \rightarrow \tau \nu \; {\rm w}/$ hadronic tag
- $B \rightarrow \tau \ell$ w/ hadronic tag (mine)

Soon: $R(D^*)$, A_{fb} from $B \to D^* \ell \nu$ and more on $|V_{ub}|$ and $|V_{cb}|$

Questions?

FUTURE OF BELLE II - DETECTOR UPGRADES

Promising upgrades for Belle II in future - some relevant highlights

Subdetector	Improvements	Key Impacts
VXD	Tracking efficiency at low momentum	V_{cb} studies which use $q^2 \equiv (p_l + p_{\nu})^2$
		Vetoes for rare B decays
	Vertex and IP resolution	Time-dependent CP violation studies
		B decays with $b \rightarrow s\ell\ell$ processes
TOP/ARICH	Minimisation of QE losses	Cabibbo suppressed hadronic B decays, $ V_{ub} $
	Timing resolution	from inclusive semileptonic B decays
KLM	Time-of-flight measurements	Time-dependent CP violation studies
		Background suppression for all analyses
Trigger	Track trigger from CDC and VXD	Higher efficiency for precision measurements,
		rare B decays, dark sector and τ physics

Snowmass paper for detector upgrade: arXiv:2203.11349

Full Event Interpretation (FEI)

FEI algorithm is used to reconstruct $B_{\rm tag}$

- Uses \approx 200 BDTs to reconstruct $\mathcal{O}(10000)$ different *B* decay chains using detector information
- Probability of correct B candidate is assigned
- Max tag-side efficiency: hadronic $B_{\text{tag}} = 0.76\% (B^{\pm}), 0.46\% (B^{0})$ $\approx 50\%$ higher efficiency than Belle

[Comput. Softw. Big Sci. 3, 6 (2019)]

$$M_{\rm bc} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$

Tagged $B o D^* \ell u$

Reconstruct $B^0 \to D^{*-}\ell^+\nu$ with $D^{*-} \to \overline{D}^0\pi_s^-$, $\overline{D}^0 \to K^+\pi^-$ and hadronic tag Fit m_{miss}^2 in 10 bins of $w = (m_B^2 + m_{D^*}^2 - q^2)/(2m_Bm_{D^*})$

Fit diff. decay width using CLN parametrised form factor [Nucl. Phys. B530 (1998) 153-181]

$$|V_{cb}| = (37.9 \pm 2.7) \times 10^{-3}$$
 c.f.

World Av:
$$(38.46 \pm 0.4_{exp} \pm 0.55_{th})$$

