16th Central European Seminar on Particle Physics and Quantum Field Theory November 24-25, 2022, Vienna, AUSTRIA

CKM unitary results from Belle and Belle

Christoph Schwanda representing the Belle and Belle II collaborations

Cabibbo-Kobayashi-Maskawa quark mixing

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \mathbf{V} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
$$\mathbf{u} \qquad \mathbf{C} \qquad \mathbf{t}$$
$$\mathbf{d} \qquad \mathbf{s} \qquad \mathbf{b}$$

$$-\mathcal{L}_{W^{\pm}} = rac{g}{\sqrt{2}} \ \overline{u_{Li}} \ \gamma^{\mu} \ (V_{\text{CKM}})_{ij}$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 $\mathbf{V}\mathbf{V}^{\dagger} = \mathbf{V}^{\dagger}\mathbf{V} = 1$

- The physical quark states are a mixture of the flavour eigenstates described by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix
- The CKM element magnitudes squared determine the rate of quark flavour transitions in charged current processes

$$d_{Lj} W^+_{\mu} + {\rm h.c.}$$

CP violation

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A\lambda^3 (1 - \rho - i\eta) \end{pmatrix}$$

- However, $V_{\rm CKM}$ also contains a complex phase, responsible for all CP-violating system)
- New physics would typically disturb the SM pattern of CPV

Wolfenstein parametrization of $V_{\rm CKM}$

$$\begin{array}{ccc} \lambda & A\lambda^{3}(\rho - i\eta) \\ 1 - \lambda^{2}/2 & A\lambda^{2} \\ -A\lambda^{2} & 1 \end{array} + \mathcal{O}(\lambda^{4}) \end{array}$$

phenomena in kaon and B meson decays observed so far \rightarrow extremely constrained

The CKM unitarity triangle ...and how to probe it with B mesons

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

The Belle and Belle II experiments

1999 – 2010: B factory at KEK (Japan)

KEKB double ring e+e- collider

$e^+e^- \to \Upsilon(4S) \to B\bar{B}$

Belle detector

The Belle detector

1.5T

8 GeV *e*

SC solenoid

CsI(Tl)

 $16X_0$

TOF counter

Aerogel Cherenkov cnt.

n=1.015~1.030 **3.5 GeV** *e*+

Central Drift Chamber

small cell +He/C₂H₅

 μ / K_L detection 14/15 lyr. RPC+Fe

Comparison to the B factories (1999-2010)

 $> 1 ab^{-1}$ **On resonance:** $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 24 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:** $\sim 100 {\rm ~fb}^{-1}$

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

From KEKB to SuperKEKB

Take advantage of existing items (KEKB tunnel, KEKB components)

$L = 8 \times 10^{-35} \left[cm^{-2} s^{-1} \right] \propto \frac{I_{e\pm} \xi_{\pm y}}{\beta_{y}^{*}}$

parameters		KEKB		SuperKEKB		
		LER	HER	LER	HER	UNITS
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	ф	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	4.3-4.6	ทพ
Emittance ratio	K	0.88	0.66	0.27	0.25	7.
Beta functions at IP	β_X^*/β_Y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	l _b	1.64	1.1 9	<u>3.60</u>	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴		8 x 1035		cm ⁻² s ⁻¹

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

(Final parameters)

From Belle to Belle II

CsI(TI) EM calorimeter: waveform sampling electronics, pure CsI for endcaps

4 layers DSSD vertex detector → 2 layers PXD (DEPFET) + 4 layers DSSD

Central Drift Chamber: smaller cell size, long lever arm

RPC μ & K_L counter: scintillator + Si-PM for end-caps

Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation (barrel), proximity focusing Aerogel RICH (forward)

Belle II timeline Luminosity

Peak Luminosity [x10³⁵cm_s⁻¹]

$|V_{cb}|$ and $|V_{ub}|$

Semileptonic *B* decays **Determination of the CKM elements** $|V_{cb}|$ and $|V_{\mu b}|$

- SL B decays are studied to determine the CKM elements $|V_{ch}|$ and $|V_{\mu h}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$
- The determinations can be
 - *Exclusive* from a single final state
 - *Inclusive* sensitive to all SL final states

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QC light cone s rules
Inclusive V _{cb}	B → Xlv (higher background)	Operator pro expansio

Inclusive vs. exclusive puzzle

~3 σ difference between *inclusive* and *exclusive* $|V_{xb}|$

New results in this talk Magnitude of V_{cb}

	$ V_{cb} \times 10^{-1}$
Belle $B \to D^* \ell \nu$ tagged	40.30 ± 0.86 (0
Belle II $B^0 \to D^{*-} \ell^+ \nu$ tagged	38.0 ± 2.8 (CL
Belle II $B \to D\ell\nu$ untagged	38.53 ± 1.15 (B
Belle q^2 moments in $B \to X_c \ell \nu$	41.69 ± 0.63
Belle II q^2 moments in $B \to X_c \ell \nu$	41.69 ± 0.63

New results in this talk Magnitude of V_{ub}

	$ V_{ub} \times 10^{-1}$
Belle II $B \rightarrow \pi e \nu$ tagged	3.88 ± 0.45
Belle II $B \to \pi \ell \nu$ untagged	3.54 ± 0.25
Belle $B \to X_u \ell \nu$	4.10 ± 0.28

Untagged vs. Tagged

Untagged:

only $B_{\rm sig}$ is reconstructed

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

Hadronic tagging at Belle II

Comput Softw Big Sci (2019) 3: 6.

- The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains
 - $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at low purity (about 50% increase with respect to the Belle tag)

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \; {
m GeV}/c^2$$

$B \to D^* \ell \nu$

$$w = v_B \cdot v_{D^{(*)}}$$

$$\frac{d\Gamma(\overline{B} \to D^* \ell^- \overline{\nu}_\ell)}{dw} = \frac{G_{\rm F}^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \chi(w) \eta_{\rm EW}^2.$$

$$\chi(w)\mathcal{F}^{2}(w) = \left\{ h_{A_{1}}^{2}(w)\sqrt{w^{2}-1}(w+1)^{2} \left\{ 2\left[\frac{1-2wr+r^{2}}{(1-r)^{2}}\right] \left[1+\left(1-R_{2}(w)\right)\frac{w-1}{1-r}\right]^{2} \right\},$$

$B^0 \rightarrow D^{*-} \ell^+ \nu$ tagged and $|V_{cb}|$ exclusive Winter 2022 Candidates/(0.10 GeV²)

- 189.3/fb of hadronic tagged Belle II events
- Reconstruct $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ and identify ℓ (e or μ)
- Fit missing mass squared $m_{\text{miss}}^2 = (p_{\Upsilon(4S)} - p_{B_{\text{tag}}} - p_{D^*} - p_{\ell})^2$ in bins of $w = v_R \cdot v_{D^*}$ to extract *w* spectrum

120

100

80

60

40

20

ndidates/(0.05)

Ũ

40

30

20

10

0

-1

$B^0 \rightarrow D^{*-} \ell^+ \nu$ tagged and $|V_{cb}|$ Winter 2022

• Fit of the *w* spectrum

In the CLN parameterisation [NPB530, 153 (1998)] $\mathcal{F}(w)$ depends on $\mathcal{F}(1)$, ρ^2 , $R_1(1)$ and $R_2(1)$

$$\eta_{\rm EW} \mathcal{F}(1) |V_{cb}| = (34.6 \pm 2.5) \cdot \rho^2 = 0.94 \pm 0.21$$

Largest systematics: tag calibration, slow pion tracking

$B \rightarrow D^* \ell \nu$ lattice QCD input

- FLAV 2021 average [arXiv:2111.09849]: $\eta_{\rm EW} \mathscr{F}(1) = 0.910 \pm 0.013$
- New lattice calculations beyond zero recoil (w > 1)
 - FNAL/MILC under review A. Bazarvov et al. [arXiv:2105.14019]
 - HPQCD & JLQCD in preparation

$B \rightarrow D^* \ell \nu$ tagged and $|V_{ch}|$ exclusive **Preliminary**

- Based on 711/fb, 4 samples $(B^{0}e, B^{0}\mu, B^{+}e \text{ and } B^{+}\mu)$
- Belle II hadronic tag is used
- Signal is extracted from the $M_{\rm miss}^2$ distribution in bins of the kinematic variables (w, $\cos \theta_l$, $\cos \theta_V$, χ)

$B \rightarrow D^* \ell \nu$ tagged and $|V_{cb}|$ exclusive **Preliminary**

Measured Shapes + External Branching Ratio Input

BGL(121)	Value	Correlat	tion			
$a_0 \times 10^3$	24.93 ± 1.41	1.00	0.25	-0.21	0.26	-0.30
$b_0 imes 10^3$	13.11 ± 0.18	0.25	1.00	-0.01	-0.01	-0.62
$b_1 \times 10^3$	-11.93 ± 12.72	-0.21	-0.01	1.00	0.25	-0.48
$c_1 \times 10^3$	-0.87 ± 0.97	0.26	-0.01	0.25	1.00	-0.49
$ V_{cb} \times 10^3$	40.77 ± 0.92	-0.30	-0.62	-0.48	-0.49	1.00
CLN	Value	e Corre	elatior	ı		
$ ho^2$	1.25 ± 0.09	9 1.0	0 0	.56 –	0.89	0.38
$R_{1}(1)$	1.32 ± 0.08	8 0.5	6 1	.00 –	-0.63	-0.03
D(1)	0.85 ± 0.07	7 -0.8	0 _0	63	1.00	-0.15
$n_2(1)$	0.05 ± 0.01	-0.8	9 -0	.05	1.00	0.10
$ V_{cb} \times 10^3$	0.85 ± 0.07 40.30 ± 0.86	6 - 0.8	$\frac{3}{8} - 0$.03 –	0.15	1.00

Based on the lattice input at zero-recoil: $h_{A_1}(1) = 0.906 \pm 0.013$

$B \rightarrow D^* \ell \nu$ tagged, comparison to non-zero recoil lattice Preliminary

Here: beyond zero-recoil points overlayed (not in fit)

$B \rightarrow D\ell\nu$ untagged and $|V_{ch}|$ exclusive arXiv:2210.13143

- Signal extracted from $\cos \theta_{BY} = \frac{2 E_B^* E_Y^* m_B^2 m_Y^2}{2|p_B^*||p_Y^*|}$

• 189.3/fb of Belle II data, four subsamples ($B^0e, B^0\mu, B^+e$ and $B^+\mu$) Belle II Preliminary $B^- \rightarrow D^0 e^- \overline{\nu}_e$ χ^2 /ndf: 18.20/14.00 $\eta_{EW} |V_{cb}|_{BGL} =$ $(38.53 \pm 1.15) \times 10^{-3}$ 1.5 1.1 1.3 1.6 1.7 1.4 1.2 W 28

$|V_{ch}|$ from inclusive decays

$$\mathbf{B} \rightarrow \mathbf{X} | \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 |V_{cb}$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative) **C**_i: coefficients (perturbative)

	Kinetic	1S
	[JHEP 1109 (2011) 055]	[PRD70, 094017 (2004)]
O(1)	m _b , m _c	m _b
O(1/m² _b)	$μ^2_π$, $μ^2_G$	λ_1, λ_2
O(1/m³ _b)	$ρ^3$ _D , $ρ^3$ _{LS}	ρ ₁ , τ ₁₋₃

• Parton-hadron duality \rightarrow the hadronic ME depend only on the initial state

$\frac{q^2 = (p_\ell + p_\nu)^2}{q^2 \text{ moments in } B \to X_c \ell \nu}$ arXiv:2205.06372, submitted to PRD

- Motivated by JHEP 02 (2019) 177 [arXiv:1812.07472]
- Semileptonic *B* decays are reconstructed in 62.8/fb of hadronic tagged Belle II events
- Signal weight w as a function of q^2 determined from fitting the hadronic mass M_X
- q^2 spectra are calculated as event-wise average
- Leading systematics: background, moment calibration

q^2 moments in $B \to X_c \ell \nu$ arXiv:2205.06372, submitted to PRD

- Belle II q^2 moments compared to Belle q^2 moments PRD 104, 112011 (2021) [arXiv:2109.01685]
- And fit by Bernlochner et al. [arXiv:2205.10274]
- This fit gives $|V_{cb}| = (41.69 \pm 0.63) \cdot 10^{-3}$

 $B \rightarrow \pi \ell \nu$

The golden mode for $|V_{\mu b}|$ exclusive

- Differential rate in terms of $q^2 = (p_{\ell} + p_{\nu})^2$ $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{da^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$
- BCL extraction of $|V_{\mu b}|$ [Phys.Rev.D79:013008,2009; Erratum-ibid.D82:099902,2010]
 - Measure the differential rate in bins of q^2
 - Theory calculates $f_+(q^2)$ at values of q^2
 - Combined fit to the BCL expansion to determine $|V_{ub}|$ and $b_k(z)$ is a map of q^2)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k} \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right]$$

$B \rightarrow \pi e \nu$ tagged and $|V_{\mu h}|$ exclusive arXiv:2206.08102

189.3/fb of Belle II, tag side is reconstructed by hadronic tag

$B \rightarrow X_{\mu} \ell \nu$ and $|V_{\mu b}|$ inclusive PRD 104, 012008 (2021), PRL 127, 261801 (2021)

Unfolded + acceptance corrected distributions with total Error / Stat. Error

CKM angle ϕ_3/γ BPGGSZ method (binned model-independent) Phys.Rev.D68, 054018

- ϕ_3/γ is the phase between $b \to u$ and $b \to c$ transitions
- The interference between these two diagrams gives access to the amplitude ratio, which contains ϕ_3/γ

$$B^{-} \rightarrow \overline{D}^{\theta} K^{-}$$

$$\frac{\mathcal{A}^{\mathrm{suppr.}}(B^{-} \to \overline{D^{0}}K^{-})}{\mathcal{A}^{\mathrm{favor.}}(B^{-} \to D^{0}K^{-})} = r_{B}e^{i(\delta A)}$$

CKM angle ϕ_3/γ **BPGGSZ method (binned model-independent)** Phys.Rev.D68, 054018

- To observe interference, we need to reconstruct D^0 in a self-conjugate mode - To avoid model dependence, the strong phase difference between the D^0 and $ar{D}^0$
- decays is measured by CLEO/BES III

$$\mathbf{N}_{i}^{\pm} = \mathbf{h}_{B^{\pm}} \left[\mathbf{F}_{i} + \mathbf{r}_{B}^{2} \mathbf{F}_{i} + 2\sqrt{\mathbf{F}_{i} \mathbf{F}_{i}} (\mathbf{c}_{i} \mathbf{x}_{\pm} + \mathbf{s}_{i} \mathbf{y}_{\pm}) \right]$$

$$\mathbf{N}_{i}^{\pm} = \mathbf{h}_{B^{\pm}} \left[\mathbf{F}_{i} + \mathbf{r}_{B}^{2} \mathbf{F}_{i} + 2\sqrt{\mathbf{F}_{i} \mathbf{F}_{i}} (\mathbf{c}_{i} \mathbf{x}_{\pm} + \mathbf{s}_{i} \mathbf{y}_{\pm}) \right]$$

Belle+Belle II measurement of $B \rightarrow DK$ JHEP 02, 063 (2022), arXiv:2110.12125

- 711/fb of Belle and 128/fb of Belle II data
- Using both $D^0 \to K^0_S \pi^+ \pi^-$ and $D^0 \to K^0_S K^+ K^-$
- Yields extracted in simultaneous fit to $B \rightarrow DK$ and $B \rightarrow D\pi$ (misID rate determined from data)

Signal yields:

Belle:Belle II : $K_S^0 \pi \pi$: 1467 ± 53 $K_S^0 \pi \pi$: 280 ± 21 $K_S^0 K K$: 194 ± 17 $K_S^0 K K$: 34 ± 7

Belle+Belle II measurement of $B \rightarrow DK$ JHEP 02, 063 (2022), arXiv:2110.12125

- Simultaneous fit in Dalitz bins to extract CP observables (x_+, y_+) which contain r_R , δ_R and ϕ_3/γ
- Extract F_i directly from data to reduce systematics
- Best result from B factories but still not competitive with LHCb (~3 degrees uncertainty)

$$\delta_{\rm B}[^{\circ}] = 124.8 \pm 12.9 \text{ (stat) } \pm 0.5 \text{ (syst) } \pm 1.$$

$$r_{\rm B}^{\rm DK} = 0.129 \pm 0.024 \text{ (stat) } \pm 0.001 \text{ (syst) } \pm 1.$$

$$\gamma[^{\circ}] = 78.4 \pm 11.4 \text{ (stat) } \pm 0.5 \text{ (syst) } \pm 1.0$$

Summary

- Current data of the B factories confirms 3-generation quark mixing and fits the CKM unitarity triangle extremely well
 - There is however an experimental anomaly in the CKM magnitudes $|V_{cb}|$ and $|V_{\mu b}|$ and the precision of the angle ϕ_3/γ is still largely limited by statistics
- Belle II is an upgrade programme for the Belle B factory which aims accumulating about 50 times more data
 - 428/fb have been recorded by Belle II by summer 2022
- Belle II has produced first results for $|V_{cb}|$ and $|V_{\mu b}|$ in 2022
 - Once these analyses are finalised, we will revisit the inclusive vs. exclusive situation
- ϕ_3/γ has been measured combining the Belle and Belle II data samples
 - We need an order of magnitude more data to be competitive with hadron collider experiments