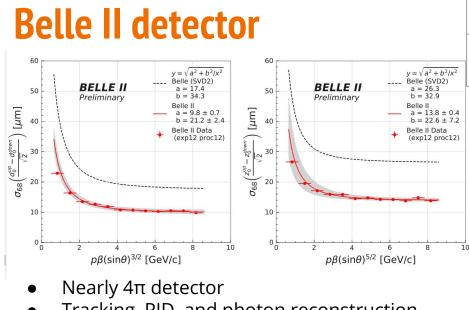
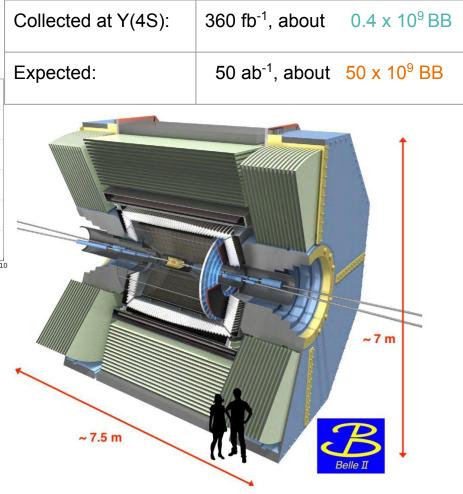
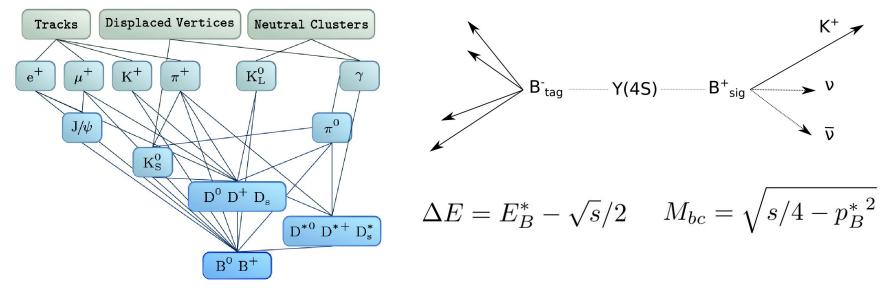

Prospects for rare decays and flavour anomalies at Belle II

S. Glazov, ECFA workshop, DESY, Hamburg, 5 Oct 2022

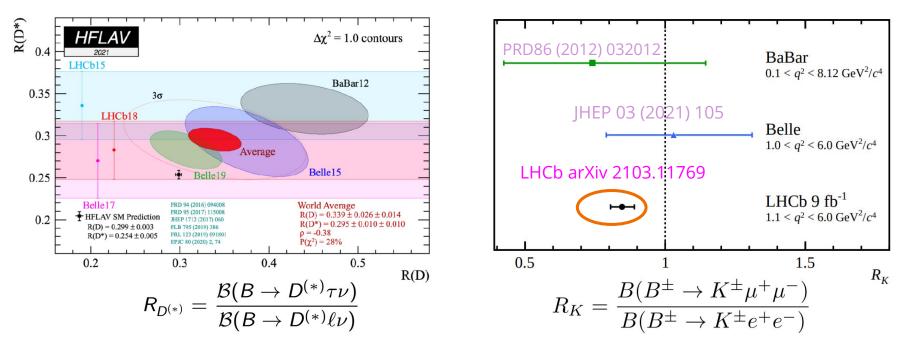

SuperKEKB



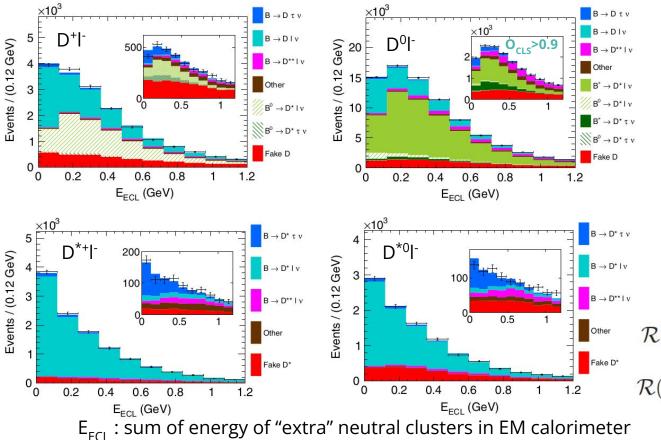
- Nano-beam collision scheme leading to highest specific luminosity, employed for the first time
- First physics data from 2018
- Design luminosity of 6.5 x 10³⁵cm⁻²s⁻¹
- Achieved world-record peak luminosity of 4.7 x 10³⁴ cm⁻² s⁻¹
- Expected total integrated luminosity of 50 ab⁻¹, (x50 Belle), to be collected over decade.
- Collected currently: 0.4 ab⁻¹


Future of high-intensity e⁺e⁻ colliders relies on success of SuperKEKB

- Tracking, PID, and photon reconstruction capabilities
- Similar performance for electrons and muons
- Well-suited to measure decays with missing energy, π^0 in the final state, inclusive measurements
- Comparable or better performance vs its predecessor Belle.



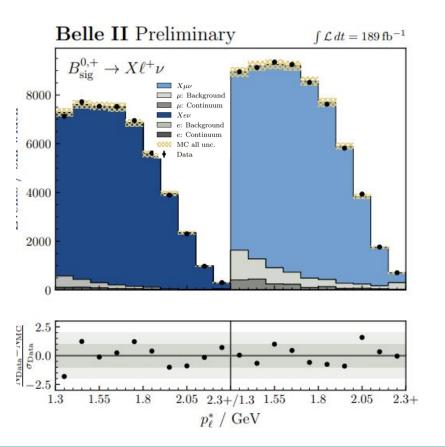
Reconstruction methods at Belle II


- The second "tag" B in $Y(4S) \rightarrow BB$ decays can be used to constrain kinematics, reduce continuum background.
- Explicit reconstruction of the tag in hadronic or semileptonic modes and inclusive tagging provide different working points in terms of efficiency/purity.

Flavour anomalies: R(D^(*)) and R(K^(*)) – status

Potential signs of lepton-flavour universality violation in tree-level decays involving τ leptons, $R(D^{(*)})$, and loop-level FCNC processes involving light leptons, $R(K^{(*)})$.

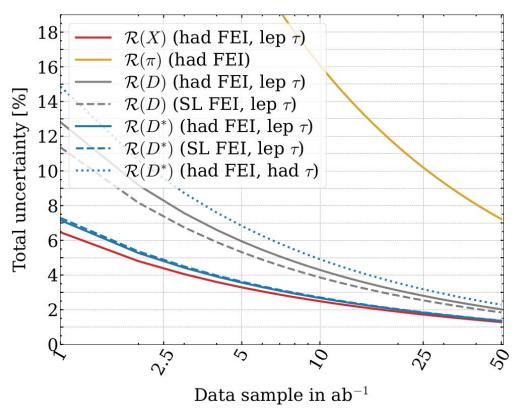
R(D^(*)) – last results from Belle


- Simultaneous determination of **R(D*)** and **R(D)** using semileptonic tagging (control over crossfeed contributions).
- Simultaneous fit in BDT output (O_{cLs}) and E_{ECL}
 - Most precise
 determination up to date,
 consistent with SM at 0.2
 σ and 1.1σ for R(D) and
 R(D*), respectively

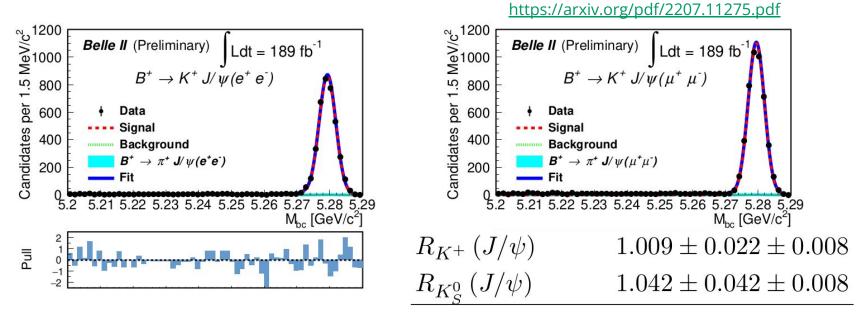
 $\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016,$

 $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014,$

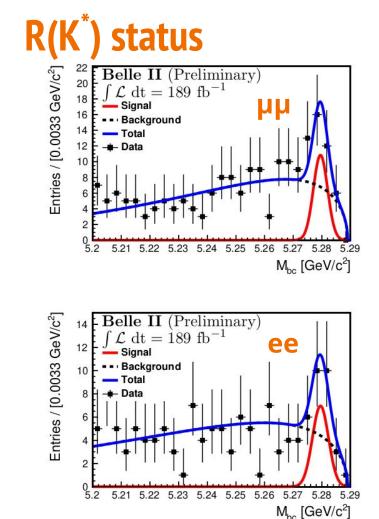
ICHEP 2022


Towards R(X_{$\tau/l}$): R(X_{e/μ}) by Belle II</sub>

- Inclusive measurement of $R(X_{e/\mu})$ using hadronic tag, that determines expected charge for the lepton
- Background from cascade decays is controlled using wrong charge combinations
- Simultaneous fit for e- and μ-channel in bins of p*₁ > 1.3 GeV/c


 $R(X_{e/\mu}) = 1.033 \pm 0.010 \pm 0.020$

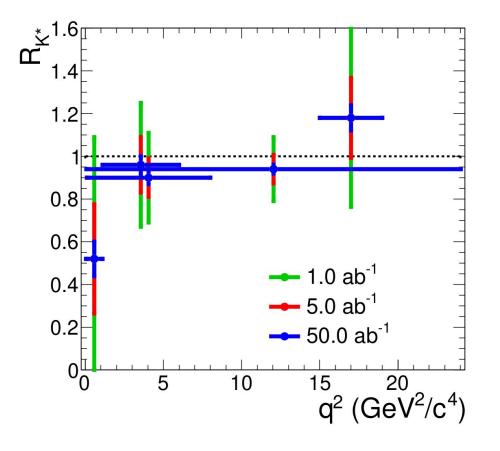
R semi-taunic: perspectives



- Uncertainties on R(D) and R(D*) should be under 10% with few ab⁻¹
- Measurements of inclusive R(X) are unique for Belle II, can be performed with high accuracy
- $b \rightarrow u$ transitions $B \rightarrow \pi | v$ can be probed as well.
- Additional observables: D* and τ polarization.

Towards R(K): measurements of $B^{+,0} \rightarrow K^{+,} J/\psi(ll)$

- Precision measurement of branching fractions, $R_{\rm K}(J/\psi)$ in neutral and charged channel
- Systematic uncertainties below 1%.
- Check of performance, useful normalization channel.

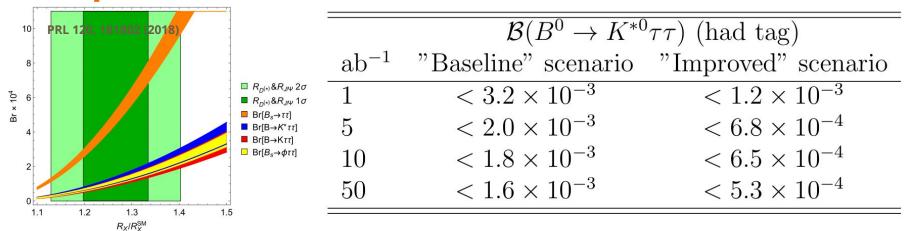

- $B^{0,+} \rightarrow K^{*0,+}II$ decays reconstructed (with veto on charmonium, low q² resonances)
- Similar performance for µµ and ee channels.

$$\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6},$$

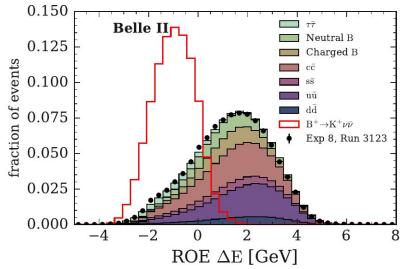
$$\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6},$$

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}.$$

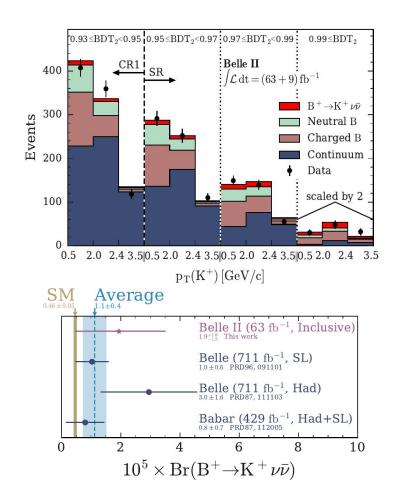
• Considering smaller luminosity, similar performance to Belle (PRL 126, 161801 (2021)).


Based on Belle PRL 126, 161801 (2021)

R(K^(*)) perspective


- Belle and Belle II performance for R(K) and R(K*) is similar
- Uncertainties are dominated by statistics
- Scaling uncertainties to different luminosities, about
 3% precision is possible for q² bin [1-6] GeV²/c⁴ for 50 ab⁻¹ data sample.

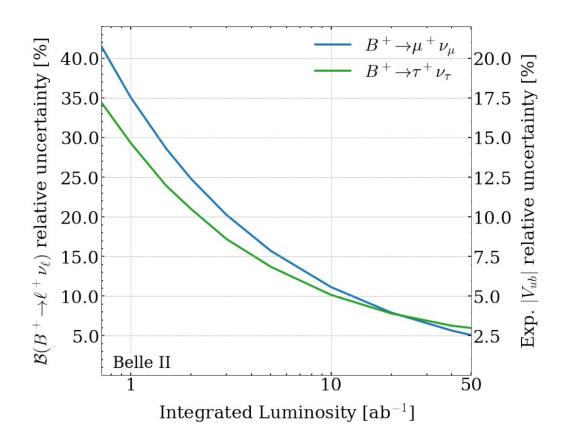
Prospects for $B^0 \rightarrow K^{*0} TT$



- $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \tau \tau$ decays are complementary to $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{II}$ and highly sensitive to NP models. B(SM) is around 10⁻⁷, while the current limit for $\mathbf{B} \rightarrow \mathbf{K}^* \tau \tau$ is < 2 10⁻³ at 90% CL [arXiv:2110.03871].
- "Baseline" sensitivity projections based on hadronic tag and leptonic decays of τ,
 "improved" consider other decay modes which improve sensitivity.
- Further improvements possible with $B^+ \rightarrow K^{*+}\tau\tau$ channel.
- Similar case for $B^+ \rightarrow K^+ \tau \tau$

$B^+ \rightarrow K^+ \gamma \gamma$ status

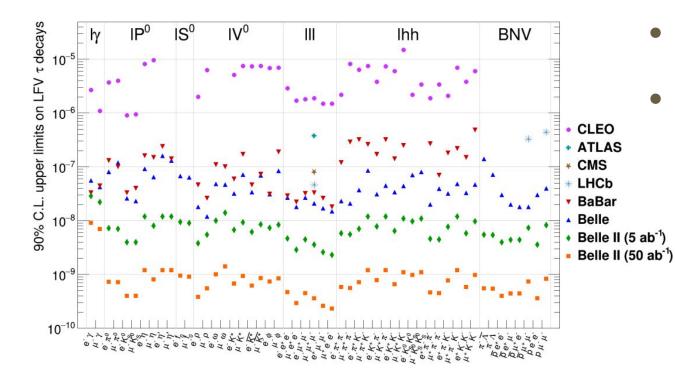
- Analysis using inclusive tag, exploiting distinct topological features of the decay.
- Competitive performance with a small
 63 fb⁻¹ data sample


$\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{vv}$ perspectives

Uncertainties on B(measured)/B(SM)

Decay	$1\mathrm{ab}^{-1}$	$5\mathrm{ab}^{-1}$	$10\mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55(0.37)	0.28(0.19)	0.21(0.14)	0.11(0.08)
$B^0 \to K^0_{\rm S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05(0.70)	0.59(0.40)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	$0.83 \ (0.59)$	$0.53 \ (0.38)$
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	$0.49\ (0.33)$	0.34~(0.23)

- Projections based on published analysis plus updated MC studies
- Baseline (improved) scenarios considers improved background normalization uncertainty (improved signal efficiency) by using additional variables, combining tagging methods
- Can establish $B^+ \rightarrow K^+ \nu \nu$ decay at 5 sigma with 5 ab⁻¹ sample


Leptonic B decays perspectives

https://arxiv.org/pdf/2207.06307.pdf

- Leptonic decays B⁺ → I⁺v are suppressed by |V_{ub}| and helicity factor.
- Small theoretical uncertainty of 0.7%: clean probe of |V_{ub}|
- Currently, $B(B^+ \rightarrow \tau^+ \nu)$ is determined to about 20% accuracy.
- Belle II should observe $B^+ \rightarrow \mu^+ \nu$ with 5 ab⁻¹, measure $|V_{ub}|$ with 2.5% accuracy for the 50 ab-1 dataset.

au decays and lepton flavour violation

- SuperKEKB is not only
 B but also c-τ factory.
- Precision lepton universality check are possible with small data samples and searches for LFV can be performed with 5 ab⁻¹ already

Belle II upgrade

Observable	2022	Belle-II	Belle-II	Belle-II
	Belle(II),	5 ab^{-1}	50 ab^{-1}	250 ab^{-1}
	BaBar			
$\sin 2\beta/\phi_1$	0.03	0.012	0.005	0.002
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	0.8°
α/ϕ_2 (WA)	4°	2°	0.6°	0.3°
$ V_{ub} $ (Exclusive)	4.5%	2%	1%	< 1%
$S_{CP}(B \to \eta' K_{\rm S}^0)$	0.08	0.03	0.015	0.007
$A_{CP}(B \to \pi^0 K_{\rm S}^0)$	0.15	0.07	0.025	0.018
$S_{CP}(B \to K^{*0}\gamma)$	0.32	0.11	0.035	0.015
$R(B \to K^* \ell^+ \ell^-)^\dagger$	0.26	0.09	0.03	0.01
$R(B \to D^* \tau \nu)$	0.018	0.009	0.0045	< 0.003
$R(B \to D \tau \nu)$	0.034	0.016	0.008	< 0.003
$\mathcal{B}(B \to \tau \nu)$	24%	9%	4%	2%
$B(B \to K^* \nu \bar{\nu})$	17 <u></u> 1	25%	9%	4%
$\mathcal{B}(\tau \to \mu \gamma)$ UL	42×10^{-9}	22×10^{-9}	6.9×10^{-9}	$3.1 imes 10^{-9}$
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	21×10^{-9}	3.6×10^{-9}	0.36×10^{-9}	0.073×10^{-9}
				10^{-9}

- Near- and long-term Belle II upgrade is under consideration
- Benchmark studies assuming x5 data sample (250 x 10⁹ BB events)
- Significant increase of sensitivity for key channels
- Requirements to SuperKEKB accelerator need to be investigated

- Success of SuperKEKB is essential for future high-luminosity e^+e^- colliders.
- Belle II should provide additional information on R(D^(*)) anomalies already with samples of 5ab⁻¹
- Clarification of R(K^(*)) anomalies is more challenging, larger data samples are required.
- $B \rightarrow K \nu \nu$ should be established by Belle II, if it is consistent with SM
- $B \rightarrow K^{(*)} \tau \tau$ is more challenging, leaves room for Z-factory
- Long-term upgrade of Belle II is under consideration, with an option to x5 the Belle II data sample.