

# Prospects for searches for a stable double strange hexaquark at Belle II

Dr. Bianca SCAVINO

Johannes Gutenberg University of Mainz

bscavino@uni-mainz.de





# Double strange hexaquark

## udsuds (H), long-standing saga (R. L. Jaffe, 1977)

- > Double strange six-quark state, same quark content as two Λ hyperons
- > Privileged 6-quark combination, the spatial wave function can be totally symmetric



## **Extremely fascinating object**

- $\rightarrow$  H would improve our understanding of the strength of  $\Lambda$ - $\Lambda$  interactions
- > Hyperon interactions are of fundamental interest in nuclear physics and nuclear astrophysics
- > A direct hyperon-hyperon scattering experiment is not feasible in a laboratory

## Many theoretical calculations and experimental searches in the years

> At present no conclusion about its existence

# Double strange hexaquark

H received revived interest in the last years

- > Recent LQCD results
- > Renewed theoretical effort



G. R. Farrar, 2017: stable H is potentially an excellent dark matter (DM) candidate

- > DM candidate within QCD
- > Could have eluded all searches to date

Whether the H is stable enough to be a DM candidate depends on its mass/binding energy

> Deep binding is facilitated by the unique symmetry structure of the H

# Deeply bound udsuds hexaquark





Y(1,2,3) ideal to look for states w/ nonzero strangeness

- > Decay primarily in three gluons
- $\rightarrow$  ss quark pairs produced with  $\sim$  same probability as uu and dd



mass

binding energy (B<sub>H</sub>)





PRL 110, 222002 (2013)

#### **BFactories**

e+e- colliders with E<sub>cm</sub> ~ 10 GeV

#### Possible discovery strategy for stable *H*

Searches @ BFactories: e⁺e⁻ → Y(1, 2, 3S) → H Λ Λ nπ



mass

binding energy (B<sub>H</sub>)

In the near future

Belle II@SuperKEKB can play a major role!



## Requirements

- **High luminosity**
- Good reconstruction capabilities of charged tracks

6 University of Mainz Bianca Scavino



E<sub>cm</sub> ~ 10 GeV





#### Spectrum of bottomonium (bb)







#### Belle II dataset





#### Tracking detectors

- VerteX Detector (VXD)
  - > PiXel Detector (PXD, 2 layers)
  - Silicon Vertex Detector (SVD, 4 layers)
- > Central Drift Chamber (CDC)

#### Particle identification subsystems

- > Time Of Propagation (TOP) counter (central region)
- > Aerogel Ring-Imaging CHerenkov (ARICH, forward region)

#### Outermost structures

- > Electromagnetic CaLorimeter (ECL)
- > Superconductive solenoid (1.5 T)
- K<sub>L</sub> and Muon detector (KLM)



## Tracking detectors

> VXD: PXD (2 layers) + SVD (4 layers)

> CDC





6 layers  $r_{in}$  (L1) = 1.4 cm  $r_{out}$  (L6) = 13.5 cm

56 layers over 14K sense wires  $r_{out} = 113 \text{ cm}$ 



## $Y(3S) \rightarrow H \wedge \Lambda (+2n \pi)$ : analysis procedure

- > Signal / background MC generation
- Signal events selection
  - > Particle-related optimization
  - Best candidate selection
  - Rest of event
- Upper limit (UL) sensitivity estimation w/ MC
- > Signal observation / UL derivation in data

$$UL(M_S) = \frac{S_{up}(F(M_S), CI)}{N_{\Upsilon(3S)} \epsilon_S(M_S)}$$

## $Y(3S) \rightarrow H \wedge \Lambda (+2n \pi)$ : analysis procedure

- > Signal / background MC generation
- Signal events selection
  - > Particle-related optimization
  - > Best candidate selection
  - > Rest of event
- Upper limit (UL) sensitivity estimation w/ MC
- > Signal observation / UL derivation in data

- > Inputs from analysis
  - > Signal efficiency ε<sub>S</sub>
  - Number of background events F
  - > CI = 90%
  - > N<sub>Y(3S)</sub> depends on the luminosity
- > Assumptions:
  - $\gt$  Poisson counting experiment,  $\lambda = F$
  - > H0: no signal, all observed events (n) are background (n = F)

$$UL(M_S) = \frac{S_{up}(F(M_S), CI)}{N_{\Upsilon(3S)} \epsilon_S(M_S)}$$

 $Y(3S) \rightarrow H \wedge \Lambda (+2n \pi)$ : analysis procedure

- > Signal / background MC generation
- Signal events selection
  - > Particle-related optimization
  - > Best candidate selection
  - > Rest of event
- > Upper limit (UL) sensitivity estimation w/ MC
- > Signal observation / UL derivation in data













No existing limits from BaBar
Novel measurement!

# Outlook

## Double strange hexaquark @ B Factories: why/how

- > Similarities between hadronic collisions and narrow bottomonia annihilations
- Good place to look for strange (exotic) baryons



## Double strange hexaquark @ B Factories: where are we

- > Belle: PRL 110, 222002 (2013)
- > BaBar: PRL 122 (2019) 7, 072002

## Double strange hexaquark @ B Factories: future plans @ Belle II

- > Cover whole H mass range (both stable and not-stable regime)
- $\gt$  Study more possible decay channels (additional  $\pi s$ ,  $\gamma$ , ..)
- Improve UL estimation (more data)

# Conclusions

- > Exciting years ahead with the Belle II experiment
- > Many intriguing perspectives for baryon and exotics physics (see also John Yelton's talk on Wednesday)
- > Among others, the search for a stable H @ Belle II in the decay of Y(3S) is part of the program
- With a relatively modest amount of data Belle II will make a world-leading measurement



## Conclusions

- > Exciting years ahead with the Belle II experiment
- Many intriguing perspectives for baryon and exotics physics (see also John Yelton's talk on Wednesday)
- Among others, the search for a stable H @ Belle II in the decay of Y(3S) is part of the program
- With a relatively modest amount of data Belle II will make a world-leading measurement









Bianca Scavino
University of Mainz



Bianca Scavino
University of Mainz









Nucl. Instrum. Meth. A, vol 499, pp. 1-7, 2018

|                                                       | KEKB                                                | SuperKEKB                                           |
|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|                                                       | LER ( $\mathrm{e^{+}}$ ) / HER ( $\mathrm{e^{-}}$ ) | LER ( $\mathrm{e^{+}}$ ) / HER ( $\mathrm{e^{-}}$ ) |
| E [GeV]                                               | 3.5 / 8.0                                           | 4.0 / 7.0                                           |
| $2\phi \; [\mathrm{mrad}]$                            | 22                                                  | 83                                                  |
| $\xi_x$                                               | $0.127 \ / \ 0.102$                                 | $0.0028 \ / \ 0.0012$                               |
| $\xi_y$                                               | $0.129 \ / \ 0.090$                                 | 0.088 / 0.081                                       |
| $eta_y^*$                                             | $5.9 \ / \ 5.9$                                     | 0.27 / 0.30                                         |
| I [A]                                                 | $1.64 \ / \ 1.19$                                   | $3.60 \; / \; 2.60$                                 |
| $\sigma_x^* \; [\mu \mathrm{m}]$                      | 147 / 170                                           | $10.1 \ / \ 10.7$                                   |
| $\sigma_y^* \; [\mathrm{nm}]$                         | 940 / 940                                           | 48 / 62                                             |
| $\mathcal{L} \ [10^{35} \ \mathrm{cm^{-2} \ s^{-1}}]$ | 0.211                                               | 8                                                   |
| $\int \mathcal{L} dt[ab^-1]$                          | 1                                                   | 50                                                  |