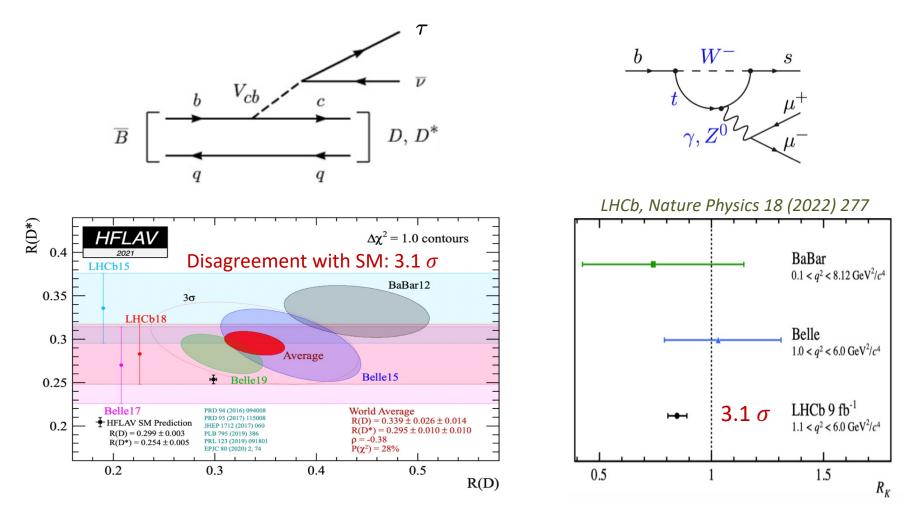
Flavor Anomalies at Belle II Status and Prospects

Jochen Dingfelder

University of Bonn On behalf of the Belle II Collaboration

Bundesministerium für Bildung und Forschung

Interplay between Particle and Astroparticle Physics 2022


The "Flavor Anomalies"

Interesting flavor anomalies seen in B decays at LHCb, Belle and BaBar

LFU and angular distributions

in electroweak penguin decays

Lepton Flavor Universality (LFU) in semileptonic decays $B \rightarrow D/D^* \tau v$

Where do we stand with analyses related to flavor anomalies in Belle II?

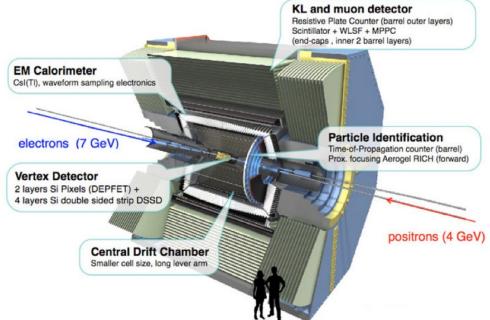
Outline

• LFU test with semileptonic B decays

○
$$R(X_{e/\mu})$$
 from inclusive $B \rightarrow X I \nu$

 \circ Prospects

• Electroweak and radiative B decays


$$\circ$$
 B \longrightarrow K^{*}|⁺|⁻

- \circ R(K_{J/ ψ}) from B \rightarrow J/ ψ K
- \circ Inclusive $B \longrightarrow X_s \gamma$
- \circ Prospects

New preliminarly Belle II measurements with 189 fb⁻¹

Belle II and SuperKEKB

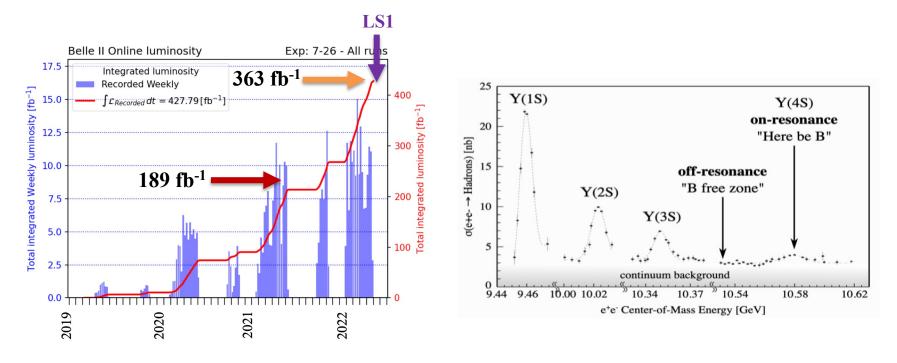
SuperKEKB

Instantaneous luminosity: ~ 6×10^{35} cm⁻²s⁻¹ Integrated luminosity: ~ 50 ab⁻¹

Belle II

- Nearly-hermetic 4π detector coverage \Rightarrow inclusive final states, neutrinos
- Excellent neutral particle reconstruction (γ, π^0, K_s)

Status of data taking

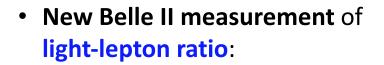

• SuperKEKB set luminosity world record on June 22, 2022:

 $L = 4.71 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (> 2 × KEKB record) \Rightarrow entering "Super B-factory" regime

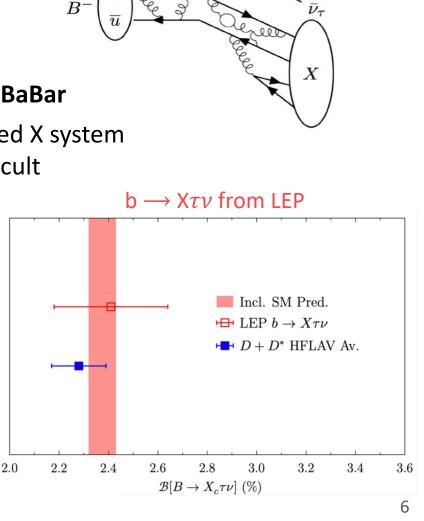
- Integrated luminosity: 424 fb⁻¹ (2019-2022)
 - \circ 363 fb⁻¹ at √s = 10.58 GeV = Υ(4S) mass

[BaBar: 420 fb⁻¹, Belle: 700 fb⁻¹]

- \circ 42 fb⁻¹ off-resonance, 60 MeV below Y(4S) mass
- \circ 19 fb⁻¹ at \sqrt{s} = 10.75 GeV for exotic hadron searches


• **Currently:** Long Shutdown 1 (15 mos.) for detector upgrades and beam-pipe improvement

LFU in inclusive semileptonic B decays

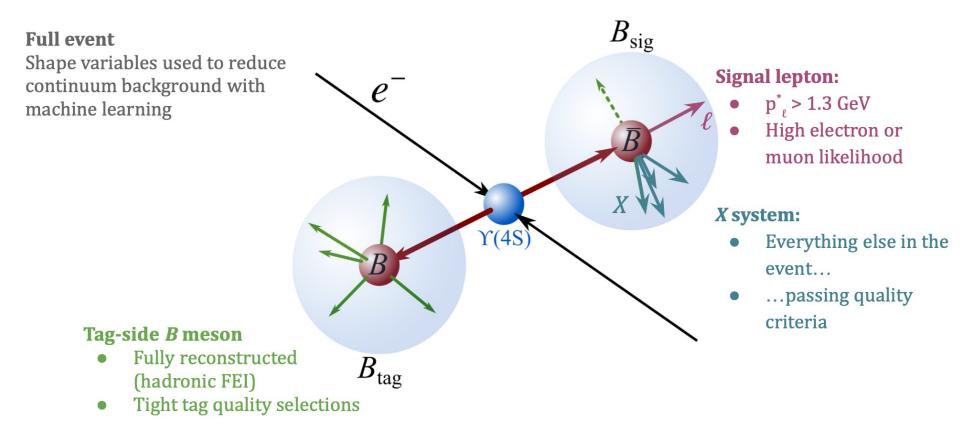

• **Inclusive** cross-check of R_D, R_{D*} anomaly:

$$R(X) = \frac{\mathcal{B}(B \to X \tau \nu)}{\mathcal{B}(B \to X \ell \nu)}$$

- So far, no R(X) measurement from Belle or BaBar
 - Large background due to less constrained X system
 - Modeling of $B \rightarrow X\tau\nu$ with $X \rightarrow ...$ difficult

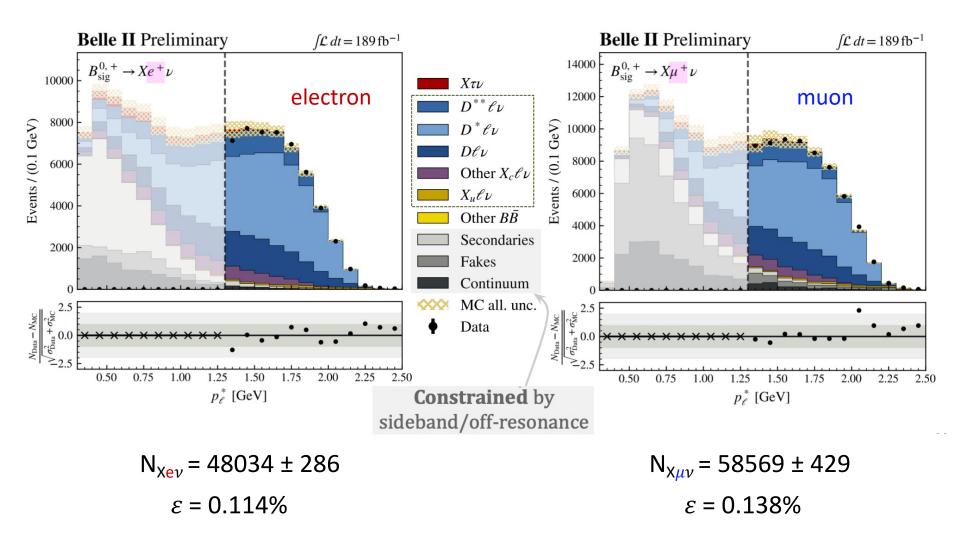
$$R(X_{\boldsymbol{e}/\boldsymbol{\mu}}) = \frac{\mathcal{B}(B \to X \boldsymbol{e} \nu)}{\mathcal{B}(B \to X \boldsymbol{\mu} \nu)}$$

 τ


ℓ⁻

 ν_{τ}

Reconstructing inclusive $B \rightarrow X I v$


H. Junkerkalefeld @ ICHEP 2022

Reconstruction of inclusive $B \rightarrow XI\nu$ decays with hadronic B tagging

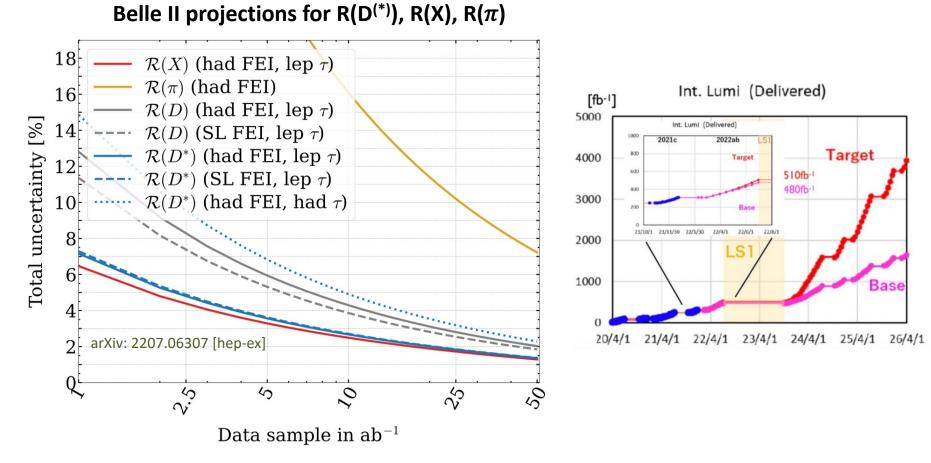
LFU in inclusive semileptonic B decays

• Signal yields for $B \rightarrow Xev$ and $B \rightarrow X\mu v$ extracted with fit in **10 bins of p_{l}^{*}**

LFU in inclusive semileptonic B decays

Result:

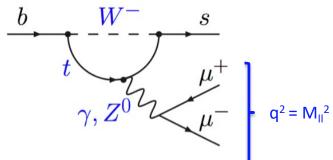
$$R(X_{e/\mu}) = 1.033 \pm 0.010^{\text{stat.}} \pm 0.020^{\text{syst.}}$$

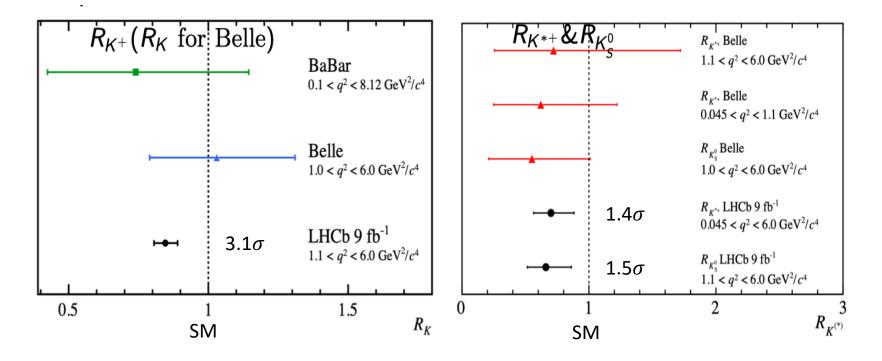

- Most precise BF-based LFU test with semileptonic B decays to date
- Agrees with SM value of 1.006 ± 0.001 within 1.2 σ EPJ 81 (2021) 984
- Compatible within 0.6 σ with exclusive Belle result: $R(D_{e/\mu}^*) = 1.01 \pm 0.01 \pm 0.03$

Source of uncertainty	Lepton ID	$X_c \ell \nu$ BFs	$X_c \ell v$ FFs	Statistical	Total
Uncertatinty of $R(X_{e/\mu})$	1.8%	0.1%	0.2%	1.0%	2.2%

Next steps:

- Uncertainty dominated by lepton ID systematic \Rightarrow expected to further improve
- Paves the way for inclusive R(X) measurement

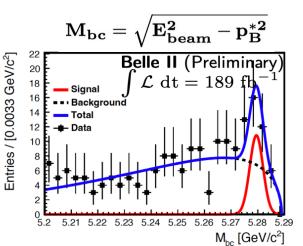

Prospects for LFU in semileptonic B decays

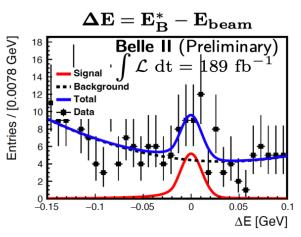

- R(X) from inclusive decays unique to Belle II
 Precision with current data set expected to be ~ 10-20%
- Belle II will need few ab⁻¹ (until ~ 2026) to clarify if R(D^(*)) anomaly has statistical or systematic origin

LFU in electroweak penguin decays

- Rare B decays with **b** → **s loop-level transitions** interesting LFU tests
- Measure LFU ratio: $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)}$

• Measurements for K⁺, K^{+*}, K_s from **LHCb**, **BaBar**, **Belle**:


$B \longrightarrow K^*|^+|^-$

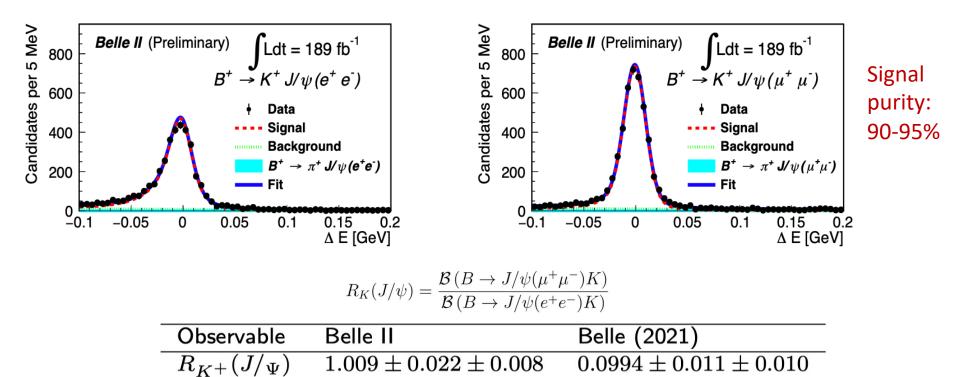

arXiv: 2206.05946 [hep-ex]

• Decay modes:

 $B^0 o K^{st 0}(K^+\pi^-)\ell\ell$ and $B^+ o K^{st +}(K^+\pi^0,K^0_S\pi^+)\ell\ell$

- Background suppression:
 - $e^+e^- \rightarrow q\overline{q}$ and $e^+e^- \rightarrow B\overline{B}$ bkgs suppressed with BDT using event shape, vertex quality, kinematics
- Extract signal yields from **2D unbinned fit in** M_{bc} and ΔE
- Branching fractions measured over entire q² range, excluding low-mass region to reject B → K^{*}γ (→ e⁺e⁻) and regions of charmonium resonances

Mode	Observed events	Branching Fraction ($\times 10^{-6}$)	World average ($ imes 10^{-6}$)
$B \to K^* e^+ e^-$	22 ± 6	$1.42 \pm 0.48 \pm 0.09$	1.19 ± 0.20
$B ightarrow K^* \mu^+ \mu^-$	18 ± 6	$1.19\pm0.31^{+0.08}_{-0.07}$	1.06 ± 0.09


• Comparable precision for e and μ modes (~25-30%)

BF measurement important first step towards R(K*) determination

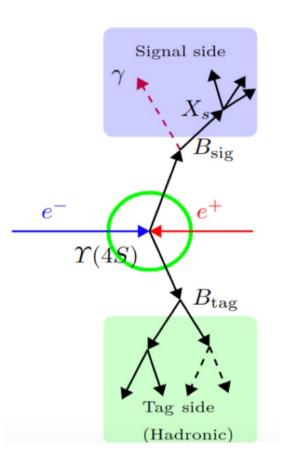
$R_{K}(J/\psi)$

- Decay channels: $B^+ \to J/\psi(\ell \ell) K^+$ and $B^0 \to J/\psi(\ell \ell) K^0$
- Tree-level b → c transition, serves as control channel for R(K) measurement
- Signal yields extracted from 2D unbinned fit in M_{bc} and ΔE

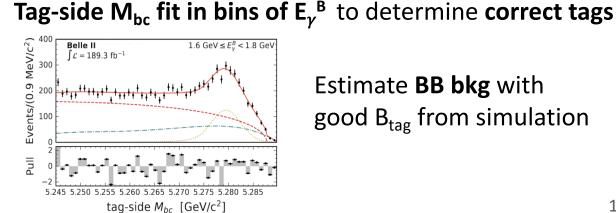
 $R_{K^0_S}(J/\Psi)$

Results agree with previous Belle and LHCb measurements

 $1.042 \pm 0.042 \pm 0.008$

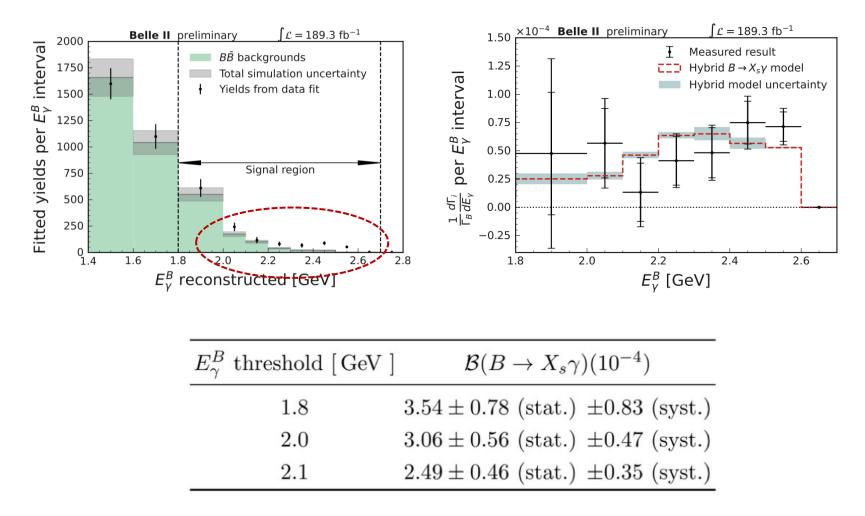

Reduced systematics compared with most-precise Belle result

 $0.0993 \pm 0.015 \pm 0.010$


Inclusive $B \rightarrow X_s \gamma$

E. Ganiev @ ICHEP 2022

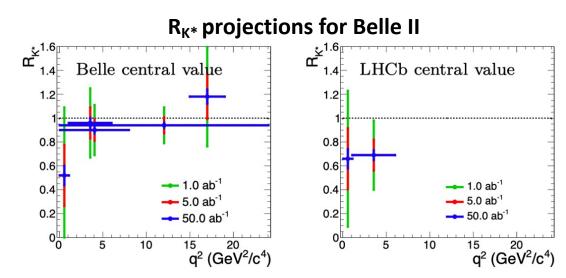
- $B \rightarrow X_s \gamma$ has **higher rate** than $B \rightarrow X_s I^+I^-$ and in addition to NP sensitivity, **measurement of E_{\nu}** facilitates determination of: иct
 - b-quark mass Ο
 - shape function (b-quark motion inside B meson) Ο



- Hadronic-tag measurement (high purity) • Reconstruct **photon energy in B rest frame** (E_{γ}^{B})
- **Inclusive** measurement (all X_s states):
 - Only photon reconstructed on signal side
 - Signal photon = highest-E photon with $E_{\nu}^{B} > 1.4 \text{ GeV}$
- Large backgrounds challenging to suppress without sacrificing "inclusiveness"

Estimate **BB bkg** with good B_{tag} from simulation

Inclusive $B \longrightarrow X_s \gamma$


- **Consistent with world average**: $(3.49 \pm 0.19) \times 10^{-4} @ 1.8 \text{ GeV}$
- Comparable precision to BaBar hadronic-tag measurement with 210 fb⁻¹

Prospects for LFU in electroweak penguin decays

Observables Belle II Belle II Belle $0.71 \, \mathrm{ab}^{-1}$ $5 \, ab^{-1}$ $50 \, {\rm ab}^{-1}$ R_K ([1.0, 6.0] GeV²) 28% 11% 3.6% $R_K (> 14.4 \, {\rm GeV^2})$ 30% 12% 3.6% R_{K^*} ([1.0, 6.0] GeV²) 26% 10% 3.2% R_{K^*} (>14.4 GeV²) 24% 9.2% 2.8% R_{X_s} ([1.0, 6.0] GeV²) 32% 12% 4.0% R_{X_s} (>14.4 GeV²) 28% 11% 3.4%

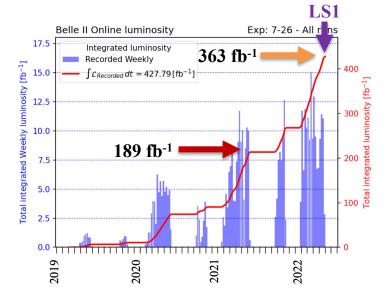
PTEP 2019 (2019) 12, 123C01

- Belle II can measure R_K, R_{K*}, R_{Xs} over full q² spectrum with similar precison
- Expected precision with
 5 ab⁻¹: ~ 10%
 50 ab⁻¹: ~ 3 4%

Belle II can provide competitive R(K), R(K*) measurements to cross-check flavor anomalies with few ab⁻¹

Summary

- Belle II has now collected **424 fb**⁻¹ of data comparable to BaBar data set
- New preliminary Belle II measurements related to flavor anomalies:
 - $R(X_{e/\mu})$ from inclusive $B \rightarrow XI\nu \Rightarrow$ Precise e/mu LFU test, first step towards R(X)
 - $\circ \quad \mathsf{B} \longrightarrow \mathsf{K}^*\mathsf{I}\mathsf{I}$
 - \circ B \rightarrow J/ ψ K

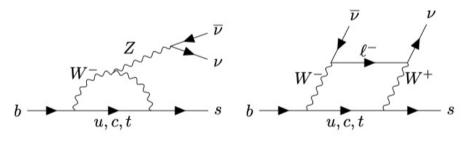

 \circ B \rightarrow X_s γ

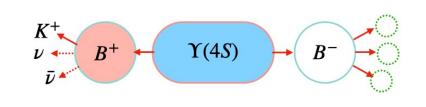
 \Rightarrow First step towards R(K^{*})

 \Rightarrow First inclusive BF measurement from Belle II

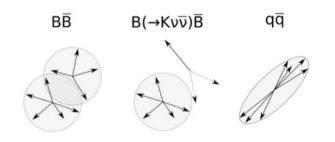
• Soon to come:

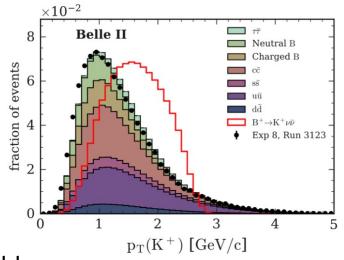
First Belle II measurement of **R(D*)** and **R(X)**

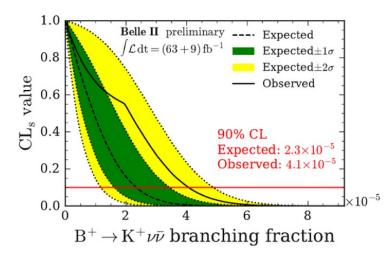


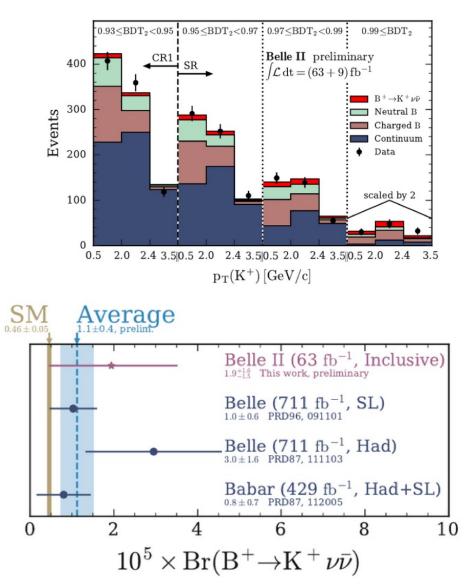

Stay tuned for new Belle II flavor-anomaly measurements with full dataset collected before the shutdown

Backup


$B^+ \longrightarrow K^+ \nu \nu$


PRL 127, 181802 (2021)


- **Complementary** to $b \rightarrow sll$
- **Precise theory prediction** (no virtual γ contribution)
- Challenge: Final state with 2ν
- **Previous searches** based on **tagged** analyses:
 - Belle : semileptonic tag $\varepsilon_{sig} \approx 0.2\%$
 - BaBar: hadronic tag $\varepsilon_{sig} \approx 0.04\%$
- New approach by Belle II based on inclusive tag:
 - \circ Signal kaon = track with hightest P_T
 - All remaining tracks/clusters associated with other B meson in event
 - Backgrounds suppressed by 2 sequential BDTs
 using topological, vertexing and kinematic variables
 - Much higher efficiency: 4.3%



$B^{+} \longrightarrow K^{+} \nu \nu$

- Extract signal yield from fit in bins of
 P_T(K⁺) and BDT score
- No significant signal observed: BF(B → Kνν) < 4.1 × 10⁻⁵ @ 90% CL
- Futher improvement underway:
 - Update with 3× more data
 - \circ Additional channels (K^{*}, K_s)
 - o Improved classifiers (NN)

- Inclusive methods offers large sensitivity improvement
- Belle II will provide world-leading measurement in the near future