Dark sector and tau physics at Belle and Belle II

Léonard Polat

CPPM Marseille

on behalf of the Belle II collaboration, with material from the Belle collaboration

Vietnam Flavour Physics Conference 2022 - 16/08/2022

Tau physics

B-factories are also good places to study taus:

Some examples of tau studies at Belle II:

- Lepton flavour violating (LFV) decays,
- LFV decay with new particles: $\tau \rightarrow \ell + \alpha$,
- Tau electric dipole moment,
- CP violation: $\tau \rightarrow K_s \pi \nu$,
- Tau mass measurement,
- Tau lifetime measurement,
- Michel parameters determination,
- V_{us} and α_s determinations,

• ...

Motivations:

- LFV decays: testing SUSY, little Higgs, leptoquark models...
- $\tau \rightarrow \ell + \alpha$: related to axion-like particles and dark matter.

New physics in τ→ℓ+α: L. Calibbi et al., P3H-20-024, TTP20-025 W. Altmannshofer et al., Phys.Lett. B762 (2016) 389-398

- Direct new physics (NP) searches

• $e^+e^- \to \tau^+\tau^- \ (\sigma = 0.92 \text{ nb})$

Precise test of the SM, indirect NP searches

• $e^+e^- \rightarrow \Upsilon(4S)[10.58 \text{ GeV}] \rightarrow B\overline{B} \ (\sigma = 1.11 \text{ nb})$

Dark sector

Existence of dark matter implied by many astrophysical observations (galaxy rotation curves, cosmic microwave background...).

Different mediators (portals) between dark matter and Standard Model (SM):

- Vector portal → **Dark photon**, **Z' boson**
- Scalar portal → **Dark Higgs**, **Dark scalar**
- Pseudo-scalar portal → Axion-Like Particles (ALPs)
- Neutrino portal \rightarrow Sterile neutrinos

Theoretical references:

Dark leptophilic scalar: B. Batell et al., Phys. Rev. D 95, 075003 (2017)						
<u>Z' boson</u> :	W. Altmannshofer et al., J. High Energ. Phys. 2016, 106 (2016) W. Altmannshoferet al., Phys. Rev. D 89, 095033 (2014)					
Dark photon & Dark Higgs: B. Batell et al., Phys. Rev. D 79, 115008 (20						
Axion-Like Particles: M. Bauer et al., arXiv:2110.10698 (2021)						

Assets of B-factories (also true for tau physics!):

- clean environment with known initial state,
- hermetic detector: large solid angle coverage,
- dedicated low-multiplicity triggers, ...

Vietnam Flavour Physics Conference 2022

Dark sector and tau physics at Belle and Belle II

BELLE

Tau lepton flavour violation

16/08/2022

Belle II

- Belle has set the **leading upper limits** for most of τ LFV decay channels.
- **Overall analysis method** (variations depending on the study):
 - signal looked for in the M_{τ} - ΔE_{τ} space ($\Delta E_{\tau} = E^{CM}_{\tau} E^{CM}_{beam}$), inside an elliptical region around the signal peak in simulation (depends on resolution).
 - background estimated within a ΔE_{τ} **band**, excluding the signal region.

Snowmass White Paper, arXiv:2207.06307 (2022)

	Decay	Br (× 10−8)	Luminosity (fb ⁻¹)	Paper reference
S I (5 ab⁻¹) I (50 ab⁻¹)	$ au{ ightarrow}\Lambda\pi$	7.2 - 14	154	Phys. Lett. B 632 (2006) 51
	$ au { ightarrow} \ell \eta / \eta' / \pi^0$	6.5 – 16	401	arXiv:hep-ex/0609013 (2006)
	$ au { ightarrow} \ell f_0$	3.2 - 3.4	671	Phys. Lett. B 672 (2009) 317
	$\tau{\rightarrow}\ell K^0{}_S(K^0{}_S)$	1.2 - 9.8	671	Phys. Lett. B 692 (2010) 4
	$ au{ ightarrow}\ell\ell\ell$	1.5 - 2.7	782	Phys. Lett. B 687 (2010) 139
	$ au{ ightarrow}\ell { m V}^0$	1.2 - 8.4	854	Phys. Lett. B 699 (2011) 251
	$ au{ ightarrow}\ell$ hh	2.0 - 8.4	854	Phys. Lett. B 719 (2013) 346
		4.5 - 12	535	arXiv:hep-ex/0609049 (2006)

988

4.2 - 5.6

Improvement of more than 1 order of magnitude expected for Belle II.

 $\tau \rightarrow \ell \gamma$

J. High Energ. Phys. 2021, 19 (2021)

Dark sector and tau physics at Belle and Belle II

 $\vec{P}_{3\pi}$

BELLE2-PUB-DRAFT-2022-005 (2022)

LFV decay $\tau \rightarrow \ell + \alpha$ (invisible)

- Search for LFV two-body decay $\tau \rightarrow \ell + \alpha$ ($\ell = e, \mu$) and α being an invisible particle, following the approach of **ARGUS**.
- The opposite τ decays as $\tau \rightarrow 3\pi \nu_{\tau}$. Due to the missing energy from neutrino, we approximate: $E_{\tau} \approx \sqrt{s}/2$, $\vec{p}_{\tau} \approx \vec{p}_{3\pi}$

→ pseudo-rest frame

Vietnam Flavour Physics Conference 2022

 $x_{\ell} \equiv \frac{E_{\ell}}{m_{\tau}/2}$

LFV decay $\tau \rightarrow \ell + \alpha$ (invisible)

 $R_{\ell \alpha}$

<u>Background suppression</u>: selection defined on tag-side (3π), since $\tau \rightarrow \ell \nu_{\ell} \nu_{\tau}$ not distinguishable from signal.

 $N_{\ell \alpha}$

Searching for an excess in normalised energy:

BELLE2-PUB-DRAFT-2022-005 (2022)

$$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}x_{\ell}} = N_{\ell\bar{\nu}\nu} \frac{\epsilon_{\ell\alpha}}{\epsilon_{\ell\nu\nu}} \frac{\mathrm{B}_{\ell\alpha}}{\mathrm{B}_{\ell\bar{\nu}\nu}} f_{\ell\alpha}(x_{\ell}) + N_{\ell\bar{\nu}\nu} f_{\ell\bar{\nu}\nu}(x_{\ell}) + N_{\mathrm{b}} f_{\mathrm{b}}(x_{\ell})$$

- N: observed events.
- $\epsilon_{\ell\alpha} \& \epsilon_{\ell\nu\nu}$: efficiencies.
- $N_{\ell\alpha}$; $N_{\ell\nu\nu} \& N_b$; $R_{\ell\alpha}$: signal yield, expected background, branching fractions ratio. <u>Free parameters</u>.

No significant excess in 62.8 fb⁻¹ of data (2019-20). 95% C.L. upper limits using the CLs method.

BELLE

Dark leptophilic scalar

- Search for a dark leptophilic scalar $\phi_{\rm L}$ that could explain the $(g 2)_{\mu}$ discrepancy.
- Introduction of coupling ξ generated by ϕ_L -Higgs mixing: $\mathcal{L} = -\xi \sum \frac{m_\ell}{v} \bar{\ell} \phi_L \ell$
- Looking for $e^+e^- \rightarrow \tau^+\tau^-\phi_L$, $\phi_L \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$) processes using 626 fb⁻¹ of data collected at Belle, different $\phi_{\rm L}$ mass ranges for the e and μ channels.
- Background rejection performed with 4 BDTs trained on simulation to identify each contribution ($\tau^+\tau^-$, $e^+e^-/\mu^+\mu^-$, $q\bar{q}$, $B\bar{B}$) + 1 BDT to identify signal events.

Preferred region to accommodate

 $(g-2)_{\mu}$ anomaly excluded up to 4 GeV/c². Consistent with BaBar

BELLE-CONF-2201 (arXiv:2207.07476, 2022)

16/08/2022

Vietnam Flavour Physics Conference 2022

Z' to invisible & Dark Higgsstrahlung

- Extending the SM with U(1) gauge groups that give rise to **new gauge bosons**: Z' and A'/h' (dark photon/Higgs).
- Consider final states with a **pair of leptons + missing energy** coming from the hypothetical particles.

- Exploit quantities related to the system that recoils against the lepton pair. In particular the recoil mass: $M_{rec}^2 = s + M_{2\ell}^2 - 2\sqrt{s} E_{2\ell}^2$ (s = center of mass energy).
 - $\rightarrow \underline{Z'}$ to invisible: signature is a peak in the M_{rec} distribution.
 - \rightarrow <u>Dark Higgsstrahlung</u>: signature is a peak in the 2D M_{rec} M_{2l} plane.
- Dominant backgrounds are found to be: $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$, $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$, $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$.

Submitted to PRL (arXiv:2207.00509, 2022)

Dark Higgsstrahlung

- Dark photon A' as mediator of the additional U(1) group. Dark Higgs h' originates from spontaneous symmetry breaking.
- A' \leftrightarrow SM: kinetic mixing ϵ ; A' \leftrightarrow h': coupling constant $\alpha_D \Rightarrow$ Dark Higgsstrahlung cross section $\propto \epsilon^2 \times \alpha_D$.
- 1st scenario: $M_{h'} > M_{A'}$, then h' decays into a dark photon pair \rightarrow searched by BaBar and Belle.
- 2nd scenario: $M_{h'} < M_{A'}$, then h' is long-lived and invisible \rightarrow searched by KLOE but in small mass range.

→ Belle II search: $e^+e^- \rightarrow A'h'; A' \rightarrow \mu^+\mu^-, h' \rightarrow \text{invisible}$

- 9003 signal simulation samples generated for different ($M_{\rm A'},\,M_{\rm h'}$) values.
- 2D plane scanned with 9003 elliptical windows, taking into account local correlations.
- Background suppression: C_η = |cos η| (η: helicity angle). Signal is uniform, background is peaking. Selection optimised with Punzi F.O.M. in each elliptical window.

Vietnam Flavour Physics Conference 2022

Submitted to PRL (arXiv:2207.00509, 2022)

90% CL UL

2

10-

^О 10⁻⁵ О

 \sim 10⁻⁶

 10^{-7}

 10^{-8}

×

Dark Higgsstrahlung

- Dark photon A' as mediator of the additional U(1) group. Dark Higgs h' originates from spontaneous symmetry breaking.
- A' \leftrightarrow SM: kinetic mixing ϵ ; A' \leftrightarrow h': coupling constant $\alpha_D \Rightarrow$ Dark Higgsstrahlung cross section $\propto \epsilon^2 \times \alpha_D$.
- 1st scenario: $M_{h'} > M_{A'}$, then h' decays into a dark photon pair \rightarrow searched by BaBar and Belle.

90% CL UL

0

• **2**nd scenario: $M_{h'} < M_{A'}$, then h' is long-lived and invisible \rightarrow searched by KLOE but in small mass range.

 10^{-4}

 $\overset{\Box}{\mathbf{v}}$ 10⁻⁵

 \sim 10⁻⁶

 10^{-7}

 10^{-8}

×

10

 $M_{h'} = 2 \, \text{GeV}/c^2$

 $= 3 \,\mathrm{GeV}/c^2$

 $r = 4 \, \text{GeV}/c^2$

8

No significant excess in **8.34 fb**⁻¹ of data (2019) compared to expected background.

90% C.L. upper limits on $\varepsilon^2 \times \alpha_D$.

First limits ever for $M_{h^{\prime}} < M_{A^{\prime}}$ and 1.65 < $M_{A^{\prime}}$ < 10.51 GeV/c².

6

Vietnam Flavour Physics Conference 2022

 $M_{h'}$ [GeV/ c^2]

З

2

 $M_{A'} = 4 \, \text{GeV}/c^2$

 $M_{A'} = 6 \, \text{GeV}/c^2$

 $M_{A'} = 8 \,\mathrm{GeV}/c^2$

4

Phys. Rev. Lett. 124, 141801 (arXiv:1912.11276, 2020) + update (2022, to be submitted to PRL)

Z' to invisible

Belle II

- Gauging the L_{μ} - L_{τ} symmetry: Z' couples only to 2nd and 3rd lepton generations, with coupling constant g' \Rightarrow searching for $e^+e^- \rightarrow \mu^+\mu^- Z'$, $Z' \rightarrow$ invisible
- Could address $b \rightarrow s\mu^+\mu^-$ and $(g 2)_{\mu}$ anomalies while providing dark matter candidates.

(Z'→ inv.)) [fb

μ

- Analysing **79.7 fb**⁻¹ of data collected at Belle II (2019-20) \rightarrow update to last results published in 2020 (0.276 fb⁻¹).
- Reconstructing exactly 2 tracks in events.
- Backgrounds suppression selection on kinematic variables optimised with the Punzi figure of merit.
- 90% C.L. upper limits set on cross section, translated into limits on q'.
- \mathbf{Z}' to invisible excluded as an explanation to $(g-2)_{\mu}$ anomaly for **0.8 < M**_{Z'} < **5.0 GeV/c²**.

 $M_{7'}$ [GeV/c²]

BELLE2-PUB-DRAFT-2022-008 (2022)

Z', S, ALP $\rightarrow \tau^+ \tau^-$

16/08/2022

- Search for $\mu^+\mu^-\tau^+\tau^-$ final states with $\tau^+\tau^-$ resonance, probing:
 - \square vector portal: " L_{μ} - L_{τ} " Z' with coupling g',
 - \square scalar portal: leptophilic dark scalar S with coupling $\boldsymbol{\xi},$
 - $\label{eq:constraint} \begin{array}{ll} & \mbox{pseudo-scalar portal: ALP with effective coupling $C_{\ell\ell}$} \\ & \mbox{(assuming $C_{ee}=C_{\mu\mu}=C_{\tau\tau}$; $C_{\gamma\gamma}=C_{\gamma Z}=0$).} \end{array}$

• 63.3 fb⁻¹ of data collected at Belle II (2019-20).

• First constraints on S for M_S > 6.5 GeV/c² ; first direct constraints on ALP $\rightarrow \tau^+\tau^-$.

Vietnam Flavour Physics Conference 2022

Summary

The search of **dark matter** is well motivated by various astrophysical observations, while **physics of tau leptons** allows to test directly or indirectly a wide variety of new physics models.

Both require specific experimental conditions, like precisely known initial state and detector hermeticity, to deal with **missing energies**, making **B-factories** suited for these fields of study.

So far, Belle and Belle II are leading the exploration of dark sector mediators in MeV-GeV regions, with very recent studies that probe the **vector**, scalar and pseudo-scalar portals. Furthermore, major contributions to tau LFV searches have been made in the past decades as well as in the last two years, in particular for $\tau \rightarrow \ell \alpha / \ell \gamma$.

Many other studies completed or to come in dark sector and tau physics! $Z' \rightarrow \mu\mu$, ALP $\rightarrow \gamma\gamma$, (in)visible dark photon, tau mass/lifetime, various tau LFV decays...

KEKB and status of Belle

- Electron (8 GeV) Positron (3.5 GeV) collider in Tsukuba, Japan.
- Operated between 1999 and 2010.
- Around **1 ab**⁻¹ of data collected at various Υ resonances and off resonance.

SuperKEKB and status of Belle II

- Electron (7 GeV) Positron (4 GeV) collider in Tsukuba, Japan. Started operation in 2019.
- Target peak luminosity: 6×10³⁵ cm⁻² s⁻¹. Luminosity record: 4.7×10³⁴ cm⁻² s⁻¹.
- Target integrated luminosity: 50 ab⁻¹. ~ 424 fb⁻¹ collected so far (good runs).
- Now in long shutdown until late 2023...

Phys. Rev. Lett. 124, 141801 (arXiv:1912.11276, 2020)

Z' to invisible

Analysis published in 2020

• Searching for " L_{μ} - L_{τ} " Z' but also "LFV" Z': scalar or vector lepton flavour violating boson that couples to all leptons

 $\Rightarrow e^+e^- \rightarrow e^\pm \mu^\mp Z', Z' \rightarrow \text{invisible}$

- Analysing 276 pb⁻¹ of data collected at Belle II (2018).
- Recoil mass divided in 69 windows below 8 GeV/c², each large as ±2 times the fitted resolution in the window.
- 90% C.L. upper limits set on g' for ${}^{"L}_{\mu}-L_{\tau}{}^{"Z'}$ and on the efficiency times the cross section for "LFV" Z'.
- No significant excess observed in data. First limit set at $m_{Z'} < 2m_{\mu}$ on g'.

Submitted to PRL (arXiv:2207.00509, 2022)

Dark Higgsstrahlung

Event count $\mathbf{N} = \boldsymbol{\varepsilon}_{sig} \times \mathbf{L} \times \boldsymbol{\sigma} + \mathbf{B}$

- ε_{sig} & B: signal efficiency & expected background (from simulation).
- L: integrated luminosity.
- **σ**: cross section of dark Higgsstrahlung.

LFV decay $\tau \rightarrow \ell + \alpha$ (invisible)

Future results from $\tau \rightarrow \ell + \alpha$ searches at Belle II might put boundaries on several NP models, for example:

 Models with axion-like particles, where Belle II should be able to put a stronger constraint on f_a (decay constant in effective Lagrangian) than the bound from ARGUS, in particular for high ALP masses.

• Models giving rise to a Z' boson, that could address issues like the $(g-2)_{\mu}$ anomaly or in dark matter phenomenology. Searches for $\tau \rightarrow \mu + (missing energy)$ can constrain the Z' parameter space.

W. Altmannshofer et al., Phys.Lett. B762 (2016) 389-398

BELLE2-PUB-DRAFT-2022-005 (2022)

LFV decay $\tau \rightarrow \ell + \alpha$ (invisible)

Data and MC comparison of normalised energy x_{ℓ} (ℓ =e, μ), along with signal distributions for different α masses.

Vietnam Flavour Physics Conference 2022

Léonard Polat

٠

Vietnam Flavour Physics Conference 2022

Tau mass measurement BELLE2-CONF-PH-2020-010 (arXiv:2008.04665, 2020)

Tau mass measurement analysis performed using 8.8 fb⁻¹ of Belle II data.

 $[\tau \rightarrow 3\pi \nu_{\tau}] + [\tau \rightarrow 1$ -prong] events are selected and the tau mass is measured ٠ following the pseudomass technique developed by the ARGUS collaboration:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \le m_{\tau}$$

The tau mass is extracted by fitting the pseudomass to an empirical edge function. ۲

23

BELLE2-CONF-PH-2020-010 (arXiv:2008.04665, 2020)

Tau mass measurement

Belle II

 Current best fit by Belle (414 fb⁻¹): 1776.61 ± 0.13_{stat} ± 0.35_{syst} MeV

K. Belous et al., Phys. Rev. Lett. 99, 011801 (2007)

- More precise measurement done by BES III near τ pair production threshold: 1776.91 ± 0.12_{stat} ± 0.13_{syst} MeV M. Ablikim et al., Phys. Rev. D 90 012001 (2014)
- **Preliminary** result from Belle II early Phase 3 data:

 m_{τ} = 1777.28 ± 0.75_{stat} ± 0.33_{syst} MeV

 \rightarrow Consistent with previous measurements; improvable statistical uncertainty; systematic errors similar to Belle but could be reduced in the future.

Systematic uncertainty MeV/c^2 Momentum shift due to the B-field map 0.29Estimator bias 0.12Choice of p.d.f. 0.08Fit window 0.04Beam energy shifts 0.03Mass dependence of bias 0.02Trigger efficiency < 0.01Initial parameters < 0.01Background processes < 0.01Tracking efficiency ≤ 0.01

Tau lifetime measurement

- **Tau lifetime** is measured thanks to the relation:
 - \rightarrow the challenge consists in measuring precisely ℓ_{τ} and $p_{\tau}.$
- Events corresponding to $[\tau \rightarrow 3\pi\nu] + [\tau \rightarrow \rho\nu]$ are selected, the measurement is done on the 3-prong τ .
- The proper time is fitted with the convolution of an exponential distribution and a resolution function: and the lifetime τ_{τ} is extracted from there.
- World-best measurement comes from Belle (711 fb⁻¹):

 $\tau_{\tau} = 290.17 \pm 0.53_{stat} \pm 0.33_{syst}$ fs | K. Belous et al., Phys. Rev. Lett. 112, 031801 (2014)

• Belle II's study on simulation done with 200 fb⁻¹: τ_{τ} = 287.2 ± 0.5_{stat} fs generated τ_{τ} = 290.2 ± 0.4_{stat} fs

Belle II already competitive at ~ **150 fb**⁻¹ (5× more events than in Belle study)

$$\ell_{\tau}$$
 = decay length in lab. frame
 p_{τ} = momentum in lab. frame
t = proper decay time

 $\beta \gamma ct =$

Vietnam Flavour Physics Conference 2022

Dark sector and tau physics at Belle and Belle II

Tau lepton flavour violation

- Lepton flavour violation is heavily suppressed in the SM (extended with neutrino masses).
- Many NP models allow LFV at scales that can be probed by particle physics experiments.
- In tau physics, we consider "golden modes" like τ→ℓγ and τ→3µ, but also many others (ℓhh, ℓV⁰, ℓP⁰,...).

Improvement of more than 1 order of magnitude expected for Belle II!

Belle II

Léonard Polat

Tau lepton flavour violation

- The signal is looked for within the M_{τ} - ΔE_{τ} space ($\Delta E_{\tau} = E^{CM}_{\tau} E^{CM}_{beam}$), in an optimised region defined around the signal peak in simulation.
- Usually the signal region is rotated to get rid of the correlations: .

$$\begin{pmatrix} M'_{\tau} \\ \Delta E'_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} M_{\tau} \\ \Delta E_{\tau} \end{pmatrix}$$

Background is evaluated from sidebands. Some channels require a more thorough background suppression strategy • (e.g. $\tau \rightarrow \mu \gamma$ is much more contaminated than $\tau \rightarrow 3\mu$).

Rotated signal region $(\tau \rightarrow \mu \gamma)$

Vietnam Flavour Physics Conference 2022

CP violation in $\tau \rightarrow K_s \pi \nu$

- A decay rate asymmetry is expected in $\tau \rightarrow K_s \pi \nu$ according to the SM because the K_s is subject to CP violation:
- The SM predicts: $\mathcal{A}_{\tau}^{SM} \approx (0.36 \pm 0.01)\%$ I. I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005)
- ... while BaBar has measured: $\mathcal{A}_{\tau}^{BaBar} = (-0.36 \pm 0.23 \pm 0.11)\%$ J. P. Lees et al., Phys. Rev. D 85, 031102 (2012)
 - \rightarrow **2.8** σ discrepancy w.r.t. the SM.

A measurement of the decay rate asymmetry is a priority for Belle II, which should improve the precision by a factor ~ 8 at 50 ab⁻¹.

$\frac{Belle II}{\Gamma(\pi^{-} \times \pi^{-} K^{0} \mu)}$

16/08/2022

Dark sector and tau physics at Belle and Belle II

Second-class hadronic currents: $\tau \rightarrow \pi \eta \nu$

- Second-class hadronic currents violate G-parity, still present in the SM because of the charge and mass differences between *up* and *down* quarks, but heavily suppressed.
- $\tau \rightarrow \pi \eta \nu$ is a SCC, therefore it is a potential probe for new physics.
- The SM predicts: ${\rm Br}(\tau o \pi \eta \nu) \sim 10^{-5}$
- A. Pich, Phys. Lett. B 196, 561 (1987)
- Upper limits from two previous experiments:

```
• BaBar (470 fb<sup>-1</sup>): Br(\tau \rightarrow \pi \eta \nu) < 9.9 × 10<sup>-5</sup>
K. Hayasaka, PoS EPS-HEP2009, 374 (2009)
```

• Belle (670 fb⁻¹): Br $(\tau \rightarrow \pi \eta \nu) < 7.3 \times 10^{-5}$ P. del Amo Sanchez et al., Phys. Rev. D 83, 032002 (2011) $\tau^{-} \qquad H^{-}$ Charged Higgs a_{0}, a'_{0} exchange exchange

Vietnam Flavour Physics Conference 2022

Other topics

Michel parameters:

- 4 parameters ρ , η , ξ and δ (combinations of coupling constants in four-lepton point interaction Lagrangian), experimentally accessible in decay $\tau \rightarrow \ell \nu_{\ell} \nu_{\tau}$.
- Belle II expected to improve statistical uncertainties at 50 ab⁻¹ by one order of magnitude w.r.t. Belle ($10^{-3} \rightarrow 10^{-4}$).

Electric and magnetic dipole moments of the τ :

- Evaluating some observables that are proportional to the EDM and getting maximal sensitivity by combining results from multiple τ decay modes. Belle II expected to gain in precision by a factor 40: $|\text{Re, Im}(d_{\tau})| < 10^{-18} 10^{-19}$.
- g-2 can be evaluated similarly but sensitivity is expected to be worse than that of the au EDM.

Measurements of V_{us} and α_s :

• Determinations of the CKM matrix element and the strong coupling constant at the tau mass (+ running to the Z mass) with the help of inclusive hadronic τ decays and observable: $R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} \text{ hadrons}^{-}(\gamma))}{\Gamma(\tau \to \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma))}$

The Belle II Physics Book, Prog. Theor. Exp. Phys. (2019), 123C01

