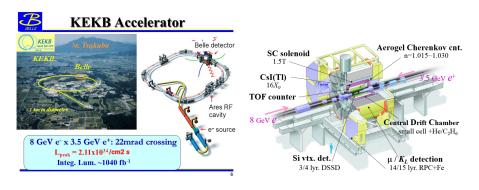


Lepton flavor universality at Belle and Belle II

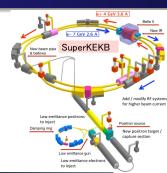
Seema Choudhury

on behalf of the Belle & Belle II collaborations



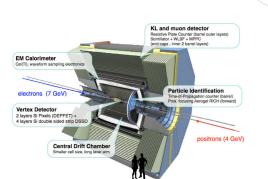
8th International Symposium on Symmetries in Subatomic Physics 29 August - 2 September, 2022 Vienna, Austria

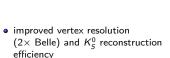
KEKB and Belle detector


- Belle experiment is located at the KEKB accelerator in Tsukuba, Japan.
- Asymmetric e^+e^- collider with center-of-mass (CM) energy at $B\bar{B}$ threshold, 10.58 GeV.
- Data taking from 1999 to 2010.
- \bullet Data collected: 711 fb $^{-1}=772$ million $B\bar{B}$ pairs.

$$e^+e^-
ightarrow \Upsilon(4S)
ightarrow Bar{B}$$

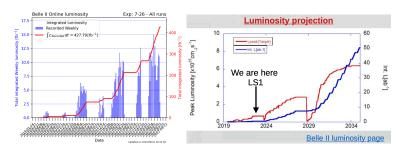
SuperKEKB Accelerator


- Located at Tsukuba, Japan.
- Asymmetric e⁺ (4 GeV) e⁻ (7 GeV) collider with CM energy at BB̄ threshold, 10.58 GeV.
- Aims to collect 50 ab⁻¹ (50 \times Belle) of data sample.
- Plan to deliver collision at a peak luminosity of $6.5 \times 10^{35}~{\rm cm^{-2}s^{-1}}$ (30 times that of KEKB) by;
 - reducing beam size by 20 times.
 - increasing beam current by 1.5 times.



Belle II detector

- Designed to operate with a performance similar or better than Belle.
- New detector (only the structure, the superconducting magnets, the crystals of the calorimeter, and KLM RPCs are re-utilized). MC simulation Belle
- Expect increased beam background ($\times 10 20$) at design luminosity
 - Upgraded trigger system and sub-detectors.



Relle II

- enhanced K/π separation
- new trigger lines for dark sector searches
- more efficient reconstruction and analysis tools

SuperKEKB: new intensity frontier machine

- Recorded integrated luminosity: 424 fb⁻¹, data taken between 2019–2022
 - $\bullet \sim 362~{
 m fb}^{-1}$ taken at a CM energy of 10.58 GeV, corresponding to the mass of the $\Upsilon(4S)$
 - ullet \sim 42 fb $^{-1}$ taken 60 MeV below the $\Upsilon(4S)$ peak, continuum background
 - ho \sim 19 fb $^{-1}$ taken around 10.75 GeV for exotic hadron searches
- World record instantaneous luminosity of $L=4.71\times 10^{34}~{\rm cm^{-2}s^{-1}}$ (> 2× KEKB record) on 22 June, 2022: Entering the regime of a "Super B factory".

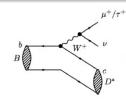
• Shutdown (LS1) from summer 2022 for 15 months: improvement of machine and detector (beam pipe, pixel vertex detector, Time-Of-Propagation PMT)

Outline

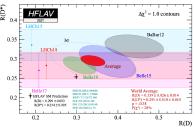
Belle

- LFU in $B^0 o D^{*-} \ell^+ \nu_\ell$
- $\mathcal{R}(D) \& \mathcal{R}(D^*)$
- R_K & R_{K*}
- LFU in $\Omega_c^0 \to \Omega^- \ell^+ \nu_\ell$

Belle II

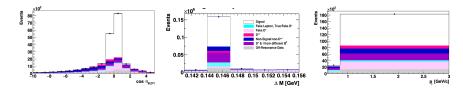

- Inclusive measurement of $R(X_{e/\mu})$
- Measurement of $\mathcal{B}(B o K^*\ell\ell)$
- R_K(J/ψ)

Results shown are with 711 fb $^{-1}$ (920 fb $^{-1}$ for $\Omega_c^0 \to \Omega^- \ell^+ \nu_\ell$) and 190 fb $^{-1}$ data sample of Belle and Belle II, respectively.


LFU in $b \rightarrow c \tau \nu$

- B decays with $b \to c$ tree-level transition (thus, assumed to be unaffected by NP) are an important probe to test LFU
- ullet Ratio of exclusive decays with au lepton can be used to test SM

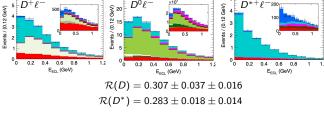
$$R_{D^{(*)}} = rac{\mathcal{B}(B o D^{(*)} au
u)}{\mathcal{B}(B o D^{(*)} \ell
u)}$$


Experimentally clean final state due to the entire decay chain being reconstructed

- Combined result from Belle [PRD 92, **072014** (2015), PRL 118, **211801** (2017), PRL **124** 161803 (2020)], BaBar [PRD 88, **072012** (2013)], and LHCb [PRL **115**, 111803 (2015), PRD **97**, 072013 (2018)] has a tension of 3.1σ with the SM
- Tension has decreased to 3.1σ from 3.8σ after recent measurement from Belle [PRL 124 161803 (2020)]

Measurement of LFU in $B^0 o D^{*-} \ell \nu_\ell$ at Belle [PRD 100, 052007 (2019)]

- ullet Measurement of LFU using exclusive semileptonic B decay, $B^0 o D^{*-}(\overline D^0(K^-\pi^+)\pi^-)\ell\nu_\ell$
- Untagged approach (high efficiency but sizable background)
- ullet D^* momentum in the CM frame $(p^*(D^*)) < 2.45 \; {
 m GeV}/c$ to suppress fake D^*
- Signal yield is extracted with a 3-dimensional binned ML fit to $\cos\theta_{B,D^*\ell}$ $\left(\frac{2E_B^*E_{D^*\ell}^-m_B^2-m_{D^*\ell}^2}{2|p_B^*||p_{D^*\ell}^*|}\right)$, $\Delta M = M(D^*-D^0)$, and lepton momentum (p_ℓ)


Ratio of the branching fractions of modes with electrons and muons provides a test of LFU

$$\frac{\mathcal{B}(B^0 \to D^{*-} e^+ \nu_e)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)} = 1.01 \pm 0.01 \pm 0.03$$

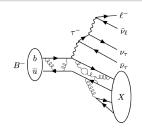
- Result is consistent with unity within the uncertainty
- Stringent test of LFU in B decays to date

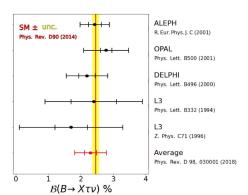
- ullet Simultaneous measurement of $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$ at Belle with semileptonic tagging method
- Exclusive semileptonic B decay analysis tag-side: $B^{0/\pm} \to D^{(*)}\ell^-\nu$ signal side: signal channel $B^{0/\pm} \to D^{(*)}\ell^-\nu$ ond normalization channel $B^{0/\pm} \to D^{(*)}\ell^-\nu$
- High signal purity at the cost of lower signal reconstruction efficiency.
 - ullet Signal is extracted by 2-dimensional binned extended ML fit to E_{ECL} and $\mathcal{O}_{\mathrm{cls}}$ E_{ECL} : Sum of energies of neutral clusters in the ECL, not associated with any reconstructed particles

 $\mathcal{O}_{\mathrm{cls}}$: Background suppression classifier output

- Most precise measurements of $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$
- Results are in agreement with the SM within 0.2σ and 1.1σ for $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$
- Combination of $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$ has a deviation of 0.8σ

GeV)

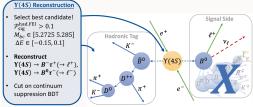

E.... (GeV) → D τ ν

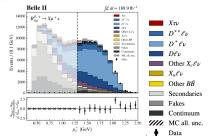

→ D** I v

 $B^0 \rightarrow D^* \tau \nu$

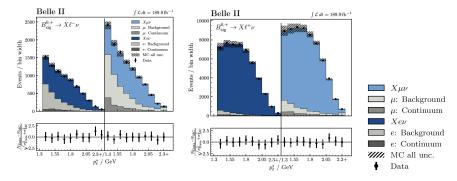
LFU in $b \rightarrow c \tau \nu$

- $\bullet \ R(X) = \frac{\mathcal{B}(B \to X \tau \nu)}{\mathcal{B}(B \to X \ell \nu)} \ \text{is the complimentary measurement to}$ the $R_{D^{(*)}}$ via inclusive reconstruction for $b \to c$ transition.
- In the SM, $R(X) = 0.223 \pm 0.004$ [PRD **92**, 054018 (2015)]
- More challenging due to larger background from less constrained X system




- ullet Inclusive decay with au lepton is challenging
- World average from LEP experiments, $\mathcal{B}(B \to X \tau \nu) = (2.41 \pm 0.23)\%$ is consistent with the SM $(2.45 \pm 0.10)\%$
- LFU can also be tested using light leptons $R(X_{e/\mu}) = \frac{\mathcal{B}(B \to Xe\nu)}{\mathcal{B}(B \to Xu\nu)}$
- $R(X_{e/\mu})$ (SM) = 1.006 ± 0.001 [arXiv:2207.03432]

Measurement of $R(X_{e/\mu})$ at Belle II


- Test LFU with inclusive measurement of $R(X_{e/\mu})$
- Analysis is performed on Belle II data sample of 189/fb with hadronic-B tagging (FEI)
- Constrain flavor and kinematics of the signal B meson by tagging the other B in its fully hadronic decays, i.e., good purity at the cost of lower signal reconstruction efficiency.
- ullet X system in signal side contains a large variety of different charged and neutral final-state particles

- lepton momentum in the CM frame of the signal B meson, p_ℓ^* is used to extract signal yield
- Require lepton to have high probability to be an electron or muon and $p_\ell^* > 1.3 \text{ GeV}/c$ to suppress backgrounds from hadron faking leptons and secondary leptons from $b \to c \to (\ell,s)$ cascades and $B \to X \tau \nu$

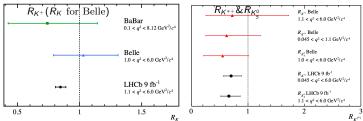
- ullet Signal yields for $B o X\mu
 u$ and B o Xe
 u are extracted in 10 bins of p_ℓ^*
- ullet Simultaneous fit for μ and e channel: one-dimensional binned ML fit

• 48034 \pm 286 and 58569 \pm 429 signal events for $B \to X e \nu$ and $B \to X \mu \nu$ channels.

$$R(X_{e/\mu}) = 1.033 \pm 0.010 \pm 0.020$$
 for $p_\ell^* > 1.3$ GeV/ c

- First inclusive test of (e, μ) lepton flavor universality in semileptonic $B \to X \ell \nu$ decays
- ullet Measurement in agreement with unity within 1.5σ
- World leading precision (2.2% combined uncertainty)
- ullet Paved the path for inclusive $R(X_{ au/\ell})=R(X)$ measurement

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ (


LFU in $b \rightarrow s\ell\ell$

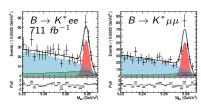
• B decays with rare $b \rightarrow s$ loop-level transitions are an important probe to test LFU

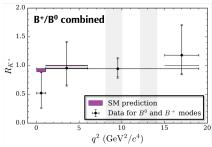
- R (U, C, t)
- LFU ratio is named as R_K and R_{K^*} for $B \to K\ell\ell$ and $B \to K^*\ell\ell$

$$R_{\mathcal{K}^{(*)}} = rac{\mathcal{B}(B
ightarrow \mathcal{K}^{(*)} \mu \mu)}{\mathcal{B}(B
ightarrow \mathcal{K}^{(*)} ext{ee})}$$

 According to SM this ratio should be 1 [EPJC 76, 440 (2016)], as the coupling of lepton to gauge boson is independent of flavor.

- LHCb [arXiv:2103.11769] $R_{K+} = 0.846^{+0.044}_{-0.041}$ for $1.1 < q^2 < 6.0$ GeV $^2/c^4$ has a deviation of 3.1σ from SM prediction with 9 fb $^{-1}$ data sample, where $q^2=M_{\ell\ell}^2$.
- $R_{K^{*+}}$ and $R_{K_c^0}$ results from LHCb [PRL 128, 191802 (2022)] are individually consistent with the SM at the 1.4σ and 1.5σ level
- ullet $B o J/\psi K^{(*)}$ can be used to cross-check the ratio, which is compatible with the SM prediction of unity.

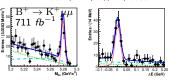

Measurement of R_{K^*} at Belle

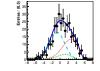

- R_{K^*} tests the lepton-flavor-universality in $B \to K^* \ell^+ \ell^-$.
- Reconstructed 4 decay modes; $B^+ \to K^{*+}(K^+\pi^0, K_5^0\pi^+)\ell^+\ell^ B^0 \to K^{*0}(K^+\pi^-, K_5^0\pi^0)\ell^+\ell^-$.
- Kinematic variables to distinguish signal from background;

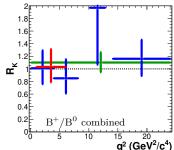
$$M_{\rm bc} = \sqrt{E_{beam}^2/c^4 - |p_B|^2/c^2}$$
$$\Delta E = E_B - E_{beam}$$

- Continuum and BB backgrounds are suppressed using Neural Networks.
- Performed 1D unbinned extended ML fit to extract the signal yield.
- \bullet 103 $^{+13.4}_{-12.7}$ and 139.9 $^{+16.0}_{-15.4}$ events for electron and muon modes.
- $R_{K^{*+}}$, $R_{K^{*0}}$ and R_{K^*} are measured for both low and high q^2 bins.
- Results consistent with the SM predictions.
- First result for $R_{K^{*+}}$ measurement.

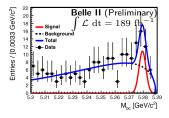
combinatorial, signal, charmonium, peaking, total

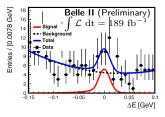

Measurement of R_K at Belle


- R_K tests the lepton-flavor-universality in $B \rightarrow K\ell\ell$.
- ullet Decay modes reconstructed, $B^+ o K^+ \ell \ell$ and $B^0 \to K_s^0 \ell \ell$.
- Background from continuum and $B\overline{B}$ are suppressed using a Neural Network having event shape, vertex quality, and kinematic variables
- Performed 3D unbinned ML fit in $M_{\rm bc}$, ΔE , and modified NN output (O') to extract the signal vield.
- Control mode is consistent with expectation: $R_{K^+}(J/\psi) = 0.994 \pm 0.011 \pm 0.010$ $R_{K^0}(J/\psi) = 0.993 \pm 0.015 \pm 0.010$
- 137 ± 14 , 138 ± 15 , $27.3^{+6.6}_{-5.8}$, and $21.8^{+7.0}_{-6.1}$ signal events for $B^+ \to K^+ \mu \mu$, $B^+ \to K^+ ee$, $B^0 \to K_s^0 \mu \mu$, and $B^0 \to K_s^0 ee$.
- R_{K^+} , R_{K^0} , R_K are measured in different q^2 bins.

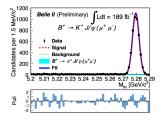

$$\begin{array}{c} \textit{q}^2 \in [0.1 \text{ , } 4.0]\text{, } [4.0 \text{ , } 8.12]\text{, } \textcolor{red}{[1.0 \text{ , } 6.0]\text{, }} [10.2,\\ 12.8]\text{, } > 14.18\text{, and } > 0.1 \text{ GeV}^2/c^4 \end{array}$$

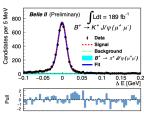
• R_K values for various q^2 bins agree with the SM prediction.


continuum, BB, signal, total



- Decay modes reconstructed: $B^0 o K^{*0}(K^+\pi^-)\ell\ell$ and $B^+ o K^{*+}(K^+\pi^0, K_S^0\pi^+)\ell\ell$
- Background from continuum and $B\overline{B}$ is suppressed using a BDT having event shape, vertex quality, and kinematic variables.
- ullet Performed 2D unbinned ML fit in $M_{
 m bc}$ and ΔE to extract the signal yield.

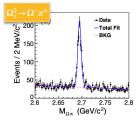


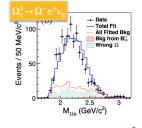

• Branching fraction are measured for the entire range of the dilepton mass, excluding the very low mass region to suppress the $B \to K^* \gamma (\to e^+ e^-)$ background and regions compatible with decays of charmonium resonances

$$\begin{split} \mathcal{B}(B \to K^*(892)\mu^+\mu^-) &= (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6}, \\ \mathcal{B}(B \to K^*(892)e^+e^-) &= (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}, \\ \mathcal{B}(B \to K^*(892)\ell^+\ell^-) &= (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}, \end{split}$$

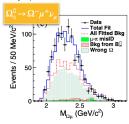
- Results are compatible with world averages within the uncertainties.
- Observation of these decays is the first step towards LFU test (R_{K*}).

- ullet Decay channels: $B^+ o J/\psi(\ell\ell) K^+$ and $B^0 o J/\psi(\ell\ell) K^0$
- Important channels to test our analysis method
- Signal yield is extracted by a 2D unbinned ML fit in $M_{\rm bc}$ and ΔE .


• Signal purity is 90 - 95%.

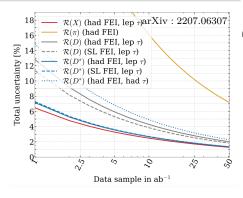

$$R_{K^+}(J/\psi) = 1.009 \pm 0.022 \pm 0.008$$

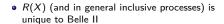
 $R_{K^0}(J/\psi) = 1.042 \pm 0.042 \pm 0.008$


- Results are statistically dominated and in agreement with results from Belle and LHCb.
- Systematics uncertainties have been reduced compared to most precise measurements from Belle [JHEP 03, 105 (2021)].

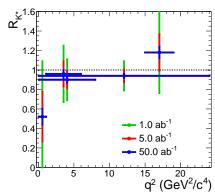
Measurement of $R(\Omega)$ at Belle

- LFU in Ω_c^0 is probed for the first time with $\Omega_c^0 o \Omega^- \ell^+ \nu_\ell$
- ullet Ω_c^0 are reconstructed in the process; $e^+e^- o car c o \Omega_c^0+$ anything
- \bullet Used 89.5, 711, and 121.1 fb $^{-1}$ data collected at the CM energies of 10.52, 10.58, and 10.86 GeV.
- Ω_c^0 signals are extracted by binned ML fits to the invariant mass $(M_{\Omega\ell})$ spectra.




- Significances of the $\Omega_c^0 \to \Omega^- \ell^+ \nu_\ell$ are both larger than 10σ , $\Omega_c^0 \to \Omega^- \mu^+ \nu_\mu$ decay is seen for first time in Belle.
- 865.3 \pm 35.3, 707.6 \pm 37.7, and 367.9 \pm 31.4 signal events for $\Omega_c^0 \to \Omega^- \pi^+$, $\Omega_c^0 \to \Omega^- e^+ \nu_\ell$, $\Omega_c^0 \to \Omega^- \mu^+ \nu_\ell$
- \bullet Ω_c^0 semileptonic decay branching fraction ratio;

$$R(\Omega) = \frac{\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu_e)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \mu^+ \nu_\mu)} = 1.02 \pm 0.10 \pm 0.02$$


• $\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu_e)/\mathcal{B}(\Omega_c^0 \to \Omega^- \mu^+ \nu_\mu)$ agrees with the expected LFU value 1.03 ± 0.06 [arXiv:2108.06110].

some LFU prospects at Belle II

- Currently estimated precision on R(X) to be $\sim 17\%$ (stat+syst)
- Few ab^{-1} of data will be sufficient to clarify whether the anomaly on $\mathcal{R}(D) \mathcal{R}(D^*)$ has a statistical or systematic origin

- Belle II can perform R_K and R_{K^*} measurements for low as well as high q^2 bins.
- Belle II will provide an independent measurement to confirm the tension with few ab⁻¹ of data
- R_{K^+} and R_{K^*} statistical sensitivity will be < 2% for entire q^2 region and $\sim 3\%$ for $q^2 \in [1-6] \text{ GeV}^2/c^4$

Conclusions

- ullet Belle II has now collected \sim 424 fb $^{-1}$ of data sample (comparable to size of that of BaBar) and can be combined with that of Belle (711 fb $^{-1}$)
- ullet Flavor physics in e^+e^- collisions offers an extremely rich physics program with many opportunities to probe New Physics
- Access to charged and neutral B with equal efficiency
- Equal sensitivity for muon and electron channels
- · Access to inclusive decay modes in addition to exclusive modes
- Untagged (high statistics) vs tagged (high purity) analysis
- Long way to go! A beginning has been made!

No sign of LFU violation so far from Belle or Belle II

An exciting era of discoveries and precision measurements !!!

4D > 4B > 4B > 4B > B 900

$\mathcal{R}(D)$ - $\mathcal{R}(D^*)$ systematics

TABLE I. Systematic uncertainties contributing to the $\mathcal{R}(D^{(*)})$ results, together with their correlation.

Source	$\Delta \mathcal{R}(D)(\%)$	$\Delta \mathcal{R}(D^*)(\%)$	Correlation
D** composition	0.76	1.41	-0.41
PDF shapes	4.39	2.25	-0.55
Feed-down factors	1.69	0.44	0.53
Efficiency factors	1.93	4.12	-0.57
Fake $D^{(*)}$ calibration	0.19	0.11	-0.76
B_{tag} calibration	0.07	0.05	-0.76
Lepton efficiency and fake rate	0.36	0.33	-0.83
Slow pion efficiency	0.08	0.08	-0.98
B decay form factors	0.55	0.28	-0.60
Luminosity, f^{+-} , f^{00} , and $\mathcal{B}(\Upsilon(4S))$	0.10	0.04	-0.58
$\mathcal{B}(B \to D^{(*)} \mathcal{C} \nu)$	0.05	0.02	-0.69
$\mathcal{B}(D)$	0.35	0.13	-0.65
$\mathcal{B}(D^*)$	0.04	0.02	-0.51
$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau})$	0.15	0.14	-0.11
Total	5.21	4.94	-0.52

R_K systematics

Sources	$B^+ \to J/\psi K^+$	$B^0 \to J/\psi K^0_{\scriptscriptstyle S}$	$R_{K^+}(J/\psi)$	$R_{K^0}(J/\psi)$
Lepton identification	± 0.68	± 0.68	± 0.97	± 0.97
Kaon identification	± 0.80	_	_	_
K_S^0 identification	_	± 1.57	_	_
Track reconstruction	± 1.05	± 1.40	_	_
Efficiency calculation	± 0.14	± 0.18	± 0.20	± 0.25
Number of $B\bar{B}$ pairs	± 1.40	± 1.40	_	_
$f^{+-(00)}$	± 1.20	± 1.20	_	_
\mathcal{O}_{\min}	± 0.16	± 0.28	± 0.24	± 0.39
PDF shape parameters	$^{+0.15}_{-0.20}$	$^{+0.05}_{-0.10}$	$^{+0.22}_{-0.31}$	$^{+0.10}_{-0.20}$
Total	±2.38	±2.90	+1.05 -1.07	+1.08 -1.09

Source	$\mathcal{B}\left(B \to KJ/\psi\right)$			R_K		
	K^+	K^+	K_S^0	K_S^0	K^+	K^0
	e^+e^-	$\mu^+\mu^-$	e^+e^-	$\mu^+\mu^-$		
Number of $B\overline{B}$ events	1.5	1.5	1.5	1.5	-	-
PDF shape	0.2	0.2	0.2	0.2	0.2	0.2
Electron identification	0.6	_	0.6	_	0.6	0.6
Muon identification	-	0.4	-	0.4	0.4	0.4
Kaon identification	0.2	0.2	-	-	-	-
K_S^0 reconstruction	-	-	3.0	3.0	_	-
Tracking efficiency	0.9	0.9	1.2	1.2	_	_
Simulation sample size	0.1	0.1	0.1	0.1	0.1	0.1
$\Upsilon(4S)$ branching fraction	2.6	2.6	2.6	2.6	_	_
(au_{B^+}/ au_{B^0})	-	-	-	-	-	-
Total	3.9	3.9	1.1	4.4	0.8	0.8

$R(X_{e/\mu})$ systematics

	e channel	μ channel	Combination
M_X scaling	7.8 % (21.2 %)	12.5 % (20.5 %)	8.7 % (26.8 %)
PID	1.8 % (1.2 %)	7.1 % (6.6 %)	2.1 % (1.6 %)
Tracking eff.	2.9 % (2.8 %)	5.1 % (3.4 %)	3.4 % (4.0 %)
$X_c \ell \nu$ BRs	6.6 % (15.2 %)	11.1 % (15.9 %)	7.5 % (19.9 %)
$X_c \ell \nu$ FFs	4.5 % (7.1 %)	7.2 % (6.8 %)	5.0 % (8.9 %)
Statistical	10.8 % (40.3 %)	19.4 % (48.9 %)	9.4 % (31.3 %)
Total	17.0 % (100 %)	27.7 % (100 %)	16.8 % (100 %)

• Dominate systematic comes from $X_c\ell\nu$ BRs because of discrepancy between the inclusive semileptonic B meson width and sum of exclusively measured BRs. This difference is usually filled by $D^*\pi\pi$ and $D^*\eta$ modes and are scaled to inclusive B meson width. As this is speculative, they are assigned with 100% uncertainty, this become one of the leading systematic uncertainty.