Quirks in Quark Flavour Physics, June 14-17, 2022, Zadar (Croatia)

Recent Belle II results related to anomalies in semileptonic and hadronic B decays

Christoph Schwanda for the Belle II collaboration

Belle II luminosity

- The experiment is collecting date since 2019 and will reach an integrated luminosity of about 450/fb by end of June 2022
- After the ongoing run, the experiment enters long shutdown 1 (LS1) until autumn 2023
- The ultimate goal of Belle II by >2030 is an integrated luminosity of 50/ab

2

Semileptonic B decays

Semileptonic *B* decays **Determination of the CKM elements** $|V_{cb}|$ and $|V_{\mu b}|$

- SL B decays are studied to determine the CKM elements $|V_{ch}|$ and $|V_{\mu h}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$
- The determinations can be
 - *Exclusive* from a single final state
 - *Inclusive* sensitive to all SL final states

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QC light cone s rules
Inclusive V _{cb}	B → Xlv (higher background)	Operator pro expansio

Semileptonic *B* decays Anomalies

~3 σ difference between *inclusive* and *exclusive* $|V_{xb}|$

 $\sim 3\sigma$ excess in semitauonic *B* decays

Untagged vs. Tagged

Untagged: only $B_{\rm sig}$ is reconstructed

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

Hadronic tagging at Belle II

Comput Softw Big Sci (2019) 3: 6.

- The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains
 - $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at low purity (about 50% increase with respect to the Belle tag)

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \; {
m GeV}/c^2$$

$q^{2} = (p_{\ell} + p_{\nu})^{2}$ $q^{2} \text{ moments in } B \to X_{c} \ell \nu$ [arXiv:2205.06372] submitted to PRD

- Motivated by JHEP 02 (2019) 177 [arXiv:1812.07472]
- Semileptonic *B* decays are reconstructed in 62.8/fb of hadronic tagged Belle II events
- Signal weight w as a function of q^2 determined from fitting the hadronic mass M_X
- q^2 spectra are calculated as event-wise average
- Leading systematics: background, moment calibration

q^2 moments in $B \to X_c \ell \nu$ [arXiv:2205.06372] submitted to PRD

- Belle II q^2 moments compared to Belle q^2 moments PRD 104, 112011 (2021) [arXiv:2109.01685]
- And fit by Bernlochner et al. [arXiv:2205.10274]
- This fit gives $|V_{cb}| = (41.69 \pm 0.63) \cdot 10^{-3}$

$B^0 \rightarrow D^{*-} \ell^+ \nu$ tagged and $|V_{cb}|$ **Winter 2021** Candidates/(0.10 GeV²)

- 189.3/fb of hadronic tagged Belle II events
- Reconstruct $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ and identify ℓ (*e* or μ)
- Fit missing mass squared $m_{\text{miss}}^2 = (p_{\Upsilon(4S)} - p_{B_{\text{tag}}} - p_{D^*} - p_{\ell})^2$ in bins of $w = v_R \cdot v_{D^*}$ to extract *w* spectrum

40

30

20

10

0

andidates/(0.05)

Ũ

-1

120

100

80

60

40

20

 $\mathcal{B}(B^0 \to D^{*-} \ell^+ \nu_{\ell}) = (5.27 \pm 0.22 \,(\text{stat.}) \pm 0.38 \,(\text{syst.}))\,\%$

$B^0 \rightarrow D^{*-} \ell^+ \nu$ tagged and $|V_{cb}|$ **Winter 2021**

• Fit of the *w* spectrum

In the CLN parameterisation [NPB530, 153 (1998)] $\mathcal{F}(w)$ depends on $\mathcal{F}(1)$, ρ^2 , $R_1(1)$ and $R_2(1)$

$$\eta_{\rm EW} \mathcal{F}(1) | V_{cb} | = (34.6 \pm 2.5) \cdot \rho^2 = 0.94 \pm 0.21$$

Largest systematics: tag calibration, slow pion tracking

 $B \rightarrow \pi \ell \nu$

The golden mode for $|V_{\mu b}|$ exclusive

- Differential rate in terms of $q^2 = (p_{\ell} + p_{\nu})^2$ $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{da^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$
- BCL extraction of $|V_{\mu b}|$ [Phys.Rev.D79:013008,2009; Erratum-ibid.D82:099902,2010]
 - Measure the differential rate in bins of q^2
 - Theory calculates $f_+(q^2)$ at values of q^2
 - Combined fit to the BCL expansion to determine $|V_{ub}|$ and $b_k(z)$ is a map of q^2)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k} \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right]$$

$B \rightarrow \pi e \nu$ tagged and $|V_{ub}|$ Winter 2021

- 189.3/fb of Belle II, tag side is reconstructed by hadronic FEI
- $\pi^- e^+$ and $\pi^0 e^+$ are reconstructed on the signal side
- Signal yield is extracted from the missing mass distribution in three bins of q^2

$B \rightarrow \pi e \nu$ tagged and V_{ub} **Winter 2021**

• BCL fit with the FNAL-MILC form factor [Phys. Rev. D 92, 014024 (2015)]

Decay mode	Fitted $ V_1 $	ub
$B^0 \to \pi^- e^+ \nu_e$	(3.71 ± 0.55)	$\times 10^{-3}$
$B^+ \to \pi^0 e^+ \nu_e$	(4.21 ± 0.63)	$\times 10^{-3}$
Combined fit	(3.88 ± 0.45)	$\times 10^{-3}$

Largest systematics: tag calibration

Semitauonic *B* decays **Belle II prospects**

$$R(D, D^*, X) = \frac{\mathscr{B}(B \to D, D^*, X\tau\nu)}{\mathscr{B}(B \to D, D^*, X\ell\nu)}$$

with ℓ a light lepton

From:

Snowmass white paper "Belle II physics reach and plans for the next decade and beyond" https://www.slac.stanford.edu/~mpeskin/ Snowmass2021/ **BelleIIPhysicsforSnowmass.pdf**

[%]

Total uncertainty

Data sample in ab^{-1}

Hadronic *B* decays – motivation

- Charmed decays $B \to D^{(*)}h$
 - Mediated through Cabibbo-favoured $b \rightarrow c$ tree transition
 - Test of QCD predictions
 - $B \to D^{(*)}K$ are theoretically clean modes to measure the CKM angle ϕ_3/γ
 - New Belle II measurement of ϕ_3/γ with 11° precision: JHEP 02, 063 (2022) [arXiv:2110.12125]
- Charmless decays $B \rightarrow hh(h)$
 - Cabibbo-suppressed $b \rightarrow u$ tree or $b \rightarrow s, d$ loop transitions
 - Sensitive to non-SM loop contributions
- Observables: (ratios of) branching fractions, CP asymmetries

$B^0 \rightarrow K^0 \pi^0$ [arXiv:2104.14871]

- (A) between $B^0 \to K^+ \pi^-$ and $B^+ \to K^+ \pi^0$
- Isospin sum rule

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

- Null test: SM predicts $I_{K\pi} = 0$ in the limit of isospin symmetry and no electroweak penguin contribution [PLB 627 (2005) 82]
- Belle II can study all relevant final states

• $K\pi$ puzzle: unexpected large difference in direct CP-violating asymmetries

 $B^0 \rightarrow K^0 \pi^0$

[arXiv:2104.14871]

- Yield: 45^{+9}_{-8} candidates in 62.8/fb of Belle II data
- Challenge: Measurement of $\mathscr{A}_{K^0\pi^0}$ must rely on rest of the event flavour tagging

$$\mathcal{A}_{K^0\pi^0} = -0.40^{+0.46}_{-0.44}(\text{stat}) \pm 0.04(\text{syst}), \text{ an}$$

 $\mathcal{B}(B^0 \to K^0\pi^0) = [8.5^{+1.7}_{-1.6}(\text{stat}) \pm 1.2(\text{syst})] \times$

Summary

- Belle II is starting to shed light on anomalies in B flavour physics
- V_{cb}/V_{ub} inclusive/exclusive anomaly
 - Belle II measurement of q^2 moments in $B \to X_c \ell \nu$ [arXiv:2205.06372] submitted to PRD
 - Preliminary tagged measurements of $B^0 \to D^{*-}\ell^+\nu$ and $B \to \pi e\nu$, first Belle II determinations of $|V_{cb}|$ and $|V_{\mu b}|$
- $K\pi$ puzzle
 - First search for \mathscr{A}_{CP} in $B^0 \to K^0 \pi^0$
- We are looking forward to what we can do on more data!

Backup

$B \rightarrow \pi e \nu$ tagged at Belle II Winter 2021

q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$				
$B^0 \to \pi^- e^+ \nu_e$							
$0 \ {\rm GeV}^2 \le q^2 < 8 \ {\rm GeV}^2$	$(0.189 \pm 0.002)\%$	15.5 ± 4.6	$(0.61 \pm 0.18(\text{stat}) \pm 0.03(\text{syst})) \times 10^{-4}$				
$8~{\rm GeV^2} \le q^2 < 16~{\rm GeV^2}$	$(0.239 \pm 0.003)\%$	15.3 ± 4.8	$(0.48 \pm 0.15(\text{stat}) \pm 0.02(\text{syst})) \times 10^{-4}$				
$16~{\rm GeV^2} \le q^2 \le 26.4~{\rm GeV^2}$	$(0.229 \pm 0.003)\%$	10.3 ± 4.2	$(0.34 \pm 0.14(\text{stat}) \pm 0.02(\text{syst})) \times 10^{-4}$				
Sum	—	41.1 ± 7.8	$(1.43 \pm 0.27(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-4}$				
Fit over full q^2 range	$(0.217 \pm 0.002)\%$	42.0 ± 7.9	$(1.45 \pm 0.27(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-4}$				
			-				
q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$				
$B^+ \to \pi^0 e^+ \nu_e$							
$0~{\rm GeV^2} \le q^2 < 8~{\rm GeV^2}$	$(0.329 \pm 0.004)\%$	12.9 ± 4.7	$(2.90 \pm 1.12(\text{stat}) \pm 0.19(\text{syst})) \times 10^{-5}$				
$8~{\rm GeV^2} \leq q^2 < 16~{\rm GeV^2}$	$(0.439\pm0.005)\%$	18.1 ± 5.1	$(3.05 \pm 0.91(\text{stat}) \pm 0.20(\text{syst})) \times 10^{-5}$				
$16~{\rm GeV^2} \leq q^2 \leq 26.4~{\rm GeV^2}$	$(0.451\pm0.006)\%$	14.5 ± 4.9	$(2.38 \pm 0.85(\text{stat}) \pm 0.16(\text{syst})) \times 10^{-5}$				
Sum	_	45.5 ± 8.5	$(8.33 \pm 1.67(\text{stat}) \pm 0.55(\text{syst})) \times 10^{-5}$				
Fit over full q^2 range	$(0.402 \pm 0.003)\%$	43.9 ± 8.3	$(8.06 \pm 1.62(\text{stat}) \pm 0.53(\text{syst})) \times 10^{-5}$				
1 0	$(0.102 \pm 0.000)/0$	10.0 ± 0.0	$(0.00 \pm 1.02(5000) \pm 0.00(5350))$ ×10				

• Yields in q^2 bins are corrected by bin-by-bin unfolding

$B \rightarrow \pi e \nu$ tagged at Belle II Winter 2021

of	•	% of			
π^{-}	$e^+\nu_e$	$\mathcal{B}(B^+ \to \pi^0 e^+ \nu_e)$			
	3	1	2	3	
		2.9			
		1.2			
2			3.1		
6			0.3		
			4.8		
	1.4	1.3	1.2	1.3	
	0.4	1.0	0.5	0.5	
	0.4				
	4.8	6.7	6.7	6.7	

CKM angle ϕ_3/γ BPGGSZ method (binned model-independent) [Phys.Rev.D68, 054018]

- ϕ_3/γ is the phase between $b \to u$ and $b \to c$ transitions
- The interference between these two diagrams gives access to the amplitude ratio, which contains ϕ_3/γ

$$B^{-} \rightarrow \overline{D}^{\theta} K^{-}$$

$$\frac{\mathcal{A}^{\mathrm{suppr.}}(B^{-} \to \overline{D^{0}}K^{-})}{\mathcal{A}^{\mathrm{favor.}}(B^{-} \to D^{0}K^{-})} = r_{B}e^{i(\delta)}$$

CKM angle ϕ_3/γ **BPGGSZ method (binned model-independent)** [Phys.Rev.D68, 054018]

- To observe interference, we need to reconstruct D^0 in a self-conjugate mode - To avoid model dependence, the strong phase difference between the D^0 and $ar{D}^0$
- decays is measured by CLEO/BES III

$$\mathbf{N}_{i}^{\pm} = \mathbf{h}_{B\pm} \left[\mathbf{F}_{i} + \mathbf{r}_{B}^{2} \mathbf{\overline{F}}_{i} + 2\sqrt{\mathbf{F}_{i} \mathbf{\overline{F}}_{i}} (\mathbf{c}_{i} \mathbf{x}_{\pm} + \mathbf{s}_{i}) \right]$$

Belle+Belle II measurement of $B \rightarrow DK$ JHEP 02, 063 (2022) [arXiv:2110.12125] $D^0 \rightarrow K_8^0 \pi^+ \pi^-$

- 711/fb of Belle and 128/fb of Belle II data
- Using both $D^0 \to K_S^0 \pi^+ \pi^-$ and $D^0 \to K_S^0 K^+ K^-$
- Yields extracted in simultaneous fit to $B \rightarrow DK$ and $B \rightarrow D\pi$ (misID rate determined from data)

Signal yields:

Belle:Belle II : $K_S^0 \pi \pi$: 1467 ± 53 $K_S^0 \pi \pi$: 280 ± 21 $K_S^0 KK$: 194 ± 17 $K_S^0 KK$: 34 ± 7

Belle+Belle II measurement of $B \rightarrow DK$ JHEP 02, 063 (2022) [arXiv:2110.12125]

- and ϕ_3/γ
- Extract F_i directly from data to reduce systematics
- Best result from B factories but still not competitive with LHCb (~3 degrees uncertainty)

$$\delta_{\rm B}[^{\circ}] = 124.8 \pm 12.9 \text{ (stat) } \pm 0.5 \text{ (syst) } \pm 1.$$

$$r_{\rm B}^{\rm DK} = 0.129 \pm 0.024 \text{ (stat) } \pm 0.001 \text{ (syst) } \pm 1.$$

$$\gamma[^{\circ}] = 78.4 \pm 11.4 \text{ (stat) } \pm 0.5 \text{ (syst) } \pm 1.0$$

• Simultaneous fit in Dalitz bins to extract CP observables (x_+, y_+) which contain r_R , δ_R

