

University of Ljubljana Faculty of Mathematics and Physics

Recent Belle II results on electroweak and radiative penguins

Luka Šantelj,

Jozef Stefan Institute and University of Ljubljana

On behalf of the Belle II collaboration

Quirks in Quark Flavor Physics

Zadar, 14-17.6. 2022

- FCNC processes: suppressed in the SM; only via loop and box diagrams

- High sensitivity to potential NP contributions in loops or new tree diagrams
 - \rightarrow enhancing/suppressing decay rates, inducing lepton flavor violation, affecting angular observables, etc.

NP in radiative and EW penguins

- Effective field theory description (NP model independent):
- $\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{ts} V_{tb}^* \sum_i \underbrace{C_i \mathcal{O}_i}_{i} + \underbrace{C_i' \mathcal{O}_i'}_{\mathcal{O}_i} \qquad \qquad \mathcal{C}_i \\ \mathcal{O}_i$
 - C_i Wilson coefficients \rightarrow short distance \mathcal{O}_i operator matrix elements \rightarrow long dist.
- radiative and EW penguins sensitive to $C_7^{(,)}, \mathcal{O}_7 \sim (s_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$ Photon penguin $C_9^{(,)}, \mathcal{O}_9 \sim (\bar{s}_L \gamma_\mu b_L) (\bar{l} \gamma^\mu l)$ EW vector $C_{10}^{(,)}, \mathcal{O}_{10} \sim (\bar{s}_L \gamma_\mu b_L) (\bar{l} \gamma_5 \gamma^\mu l)$ EW axial-vector

- different observables sensitive to different combinations of C_i 's
 - $\rightarrow\,$ pinpoint NP contributions by measuring many observables
 - $\rightarrow\,$ exploit the power of global fits to understand its nature

Belle II @ SuperKEKB – B factory of 2nd generation

Belle II @ SuperKEKB – B factory of 2nd generation

- **SuperKEKB:** asymmetric e^+e^- collider operating nominally at $\Upsilon(4S) = 10.58$ GeV

So far collected data

- **SuperKEKB** achieved world record instantaneous luminosity of

 $\frac{4.65 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}}{2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} @ \text{KEKB}}{1.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} @ \text{PEP-II}}$

- Belle II data taking efficiency $\sim 90\%$
- Recorded luminosity @ Belle II

 $|>400 \text{ fb}^{-1}| \\ 988 \text{ fb}^{-1} @ \text{Belle} \\ 513 \text{ fb}^{-1} @ \text{BaBar} | \\ |$

- After LS1 boost in instantaneous luminosity

 \rightarrow expect 50 ab⁻¹ in the next 10 years

2020

2021

2022

0.0 -

2019

400

350 🖵

Belle II performance

- excellent and well understood $\gamma\,$ reconstruction efficiency (important also for $\,\pi^0,\eta\,$ reconstruction)
- excellent lepton ID (both, $e \,$ and $\, \mu)$
- good hadron ID
- improved reconstruction algorithms w.r.t. Belle (e.g. Full-Event-Interpretation)

A

Rare radiative B decays ($b \rightarrow s\gamma$)

- variety of techniques and observables accessible at Belle II

inclusive / exclusive

Branching fractions, Isospin asymmetries, CP asymmetries Inclusive spectrum parameters: m_b , $\mu_{\pi}^2 \rightarrow$ inputs for inclusive $|V_{ub}|$

- most precise measurements available from Belle

	B → K* ɣ		$B \rightarrow X_s \gamma$					
BF Precision	3% [3]		10% [2] $b \rightarrow s \gamma$ inclusive BF theoretically well described in SM[5], [6]	$BR(B^0 \to K^{*0}\gamma) =$ $BR(B^+ \to K^{*+}\gamma) =$	•			
A _{CP}	consistent with	n 0 and S	5M predictions [1], [3], [4]	$DR(D \rightarrow R \rightarrow \gamma)$				
Δ ₀₊	first evidence isospin violation @ 3.	e for .1 σ [3]	consistent with 0 [1]	${ m BR}(B_s o \phi \gamma)$ - ${ m BR}(B o X_s \gamma)$ -		-	•	
[1] Phys.Rev.D 99 (201 [2] Phys.Rev.D 91 (201 [3] Phys.Rev.Lett. 119 () 9) 3, 032012 5) 5, 052004 2017) 19, 191802	[4] hep-ph/ [5] Phys.Re [6] Phys.Re	/1608.02556 v.Lett. 98 (2007) 022002 v.Lett. 98 (2007) 022003	all BRs -		-		
$_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma)}$	$\frac{-\Gamma(B \to K^* \gamma)}{+\Gamma(B \to K^* \gamma)} \angle$	$\Delta_{0+} = \frac{\Gamma(}{\Gamma(}$	$\frac{(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^*)}{(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^*)}$	$(\overset{*+\gamma)}{(*+\gamma)}$ -0.10	-0.05	$\frac{1}{0.00}$ Re $C_7^{\rm NP}$	0.05 JHEP04(0.10 (2017)02 ⁻

Branching fraction of $B \to K^{\star} \gamma$

- signal fully reconstructed:
$$B^0 \rightarrow K^{*0}[K^+\pi^-]\gamma$$

 $B^0 \rightarrow K^{*0}[K^0_S\pi^0]\gamma$
 $B^+ \rightarrow K^{*+}[K^+\pi^0]\gamma$
 $2.25 < E^*_{\gamma} < 2.85 \text{ GeV}$
 $B^+ \rightarrow K^{*+}[K^0_S\pi^+]\gamma$

- large background from continuum events suppressed BDT based on the event shape variables
- signal extracted by an unbinned maximum likelihood fit to ΔE distribution ($\Delta E = E_B^\star - \sqrt{s}/2$)

Mode	$\mathcal{B}_{\text{meas}}$ $[10^{-5}]$	$\mathcal{B}_{\mathrm{PDG}}$ $[10^{-5}]$
$B^0 \to K^{*0} \gamma$	$4.5\pm0.3\pm0.2$	4.18 ± 0.25
$B^+ \to K^{*+} \gamma$	$5.2\pm0.4\pm0.3$	3.92 ± 0.22

- Main systematics contributions:
 - \rightarrow fit modelling
 - \rightarrow mis-modelling of π^0 / η veto and selection variables in simulation

- In the pipeline:
 - \rightarrow update, including isospin & CP asymmetry
 - \rightarrow measurement of $B \rightarrow \rho \gamma$ based on the full Belle + Belle II dataset

Belle T

First inclusive measurements: $B \rightarrow X_s \gamma$

- measurement with **untagged** approach
 - \rightarrow only high E gamma reconstructed
 - → photon spectrum obtained by subtracting expected backgrounds:
 - * continuum ($q\bar{q}$) from the off-resonance data * BB from the MC
 - \rightarrow clear excess consistent with $B \rightarrow X_{s,d}\gamma$ observed

 \rightarrow aim to provide competitive physics result using $\sim 0.5 \, \mathrm{ab}^{-1}$

 E_v^* [GeV]

First inclusive measurements: $B \rightarrow X_s \gamma$

- in the pipeline measurements with:
 - \rightarrow **hadronic tag** (FEI) approach: lower statistics
 - but independent systematics from other

- only used by BaBar \rightarrow provide competitive measurement

Year	Experiment	Tag type	Data on res	$\mathcal{B}(B \to X_s \gamma) \times 10^{-4}$	Threshold
2007	BaBar	Hadronic	$210 \ \mathbf{fb}^{-1}$	$3.66 \pm 0.85 (stat.) \pm 0.60 (syst.)$	$E_{\gamma}^* > 1.9 ~{ m GeV}$
2009	Belle	No-tag/lepton	$605~{\rm fb}^{-1}$	$3.45 \pm 0.15 (stat.) \pm 0.40 (syst.)$	$E_{\gamma}^B > 1.7 \text{ GeV}$
2012	BaBar	lepton	347 fb ⁻¹	$3.21 \pm 0.15 (stat.) \pm 0.29 (syst.)$	$E_{\gamma}^B > 1.7 \text{ GeV}$
2012	BaBar	Sum-of-exclusive	429 fb ⁻¹	$3.29 \pm 0.19 (stat.) \pm 0.48 (syst.)$	$E_{\gamma}^B > 1.7 \text{ GeV}$
2016	Belle	lepton	711 fb $^{-1}$	$3.12 \pm 0.10(\text{stat.}) \pm 0.19(\text{syst.})$	$E_{\gamma}^B > 1.6 \text{ GeV}$

 \rightarrow **semi-leptonic tag:** - not used before

Belle II

Electroweak penguin B decays

u, c, t

 $Z(,\gamma)$

LFU in $b \to s \ell^+ \ell^-$

- → excellent electron identification (nearly symmetric e, μ performance)
- \rightarrow provide independent test of anomalies with few ab⁻¹ of data
- \rightarrow able to measure $R(X_s)$
- → provide independent measurement of absolute BR for e, μ modes

EWP with missing energy

- \rightarrow known initial state allows accessing decay modes with ν in the final state
- $\rightarrow b \rightarrow s \nu \bar{\nu} \,$ sensitive probe of the SM
- $\rightarrow b \rightarrow s \tau \tau$ test of LFU (increased sensitivity to NP with enhanced coupling to heavier particles)

→ $b \rightarrow s\tau \ell$ - test of LFV (if LFU is indeed violated, LFV is allowed)

Search for $B^+ \to K^+ \nu \bar{\nu}$

- clean SM prediction $\mathcal{B} = (4.6 \pm 0.5) \times 10^{-6}$

[J. High Energ. Phys. 2015, 184 (2015)]

- not yet observed!
- uniquely accessible at B factories:

 \rightarrow traditionally searched for with explicit B_{tag} recontruction

 \rightarrow low reconstruction efficiency: ~0.2%

Phys. Rev. D 87, 112005 (2013) Phys. Rev. D 96, 091101 (2017)

→ most stringent limit from BaBar: $\mathcal{B} < 1.6 \times 10^{-5}$ @ 90% CL

Phys.Rev.Lett. 127 (2021) 18, 181802

Search for $B^+ \to K^+ \nu \bar{\nu}$ @ Belle II

- it exploits distinct signal kinematics:
- \rightarrow select highest p_T kaon kandidate
- ightarrow all other tracks associated to $B_{
 m tag}$
- → minimizing the background contamination with constraints on event topology, missing energy and vertex separation

51 discriminating variables included into two step BDT

 \rightarrow signal reconstruction eff. of ~4%

 \rightarrow validated using $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$ with removal of di-muon

Search for $B^+ \to K^+ \nu \bar{\nu}$ @ Belle II

- signal yiels is extracted from simultaneous maximum likelihood fit to on-resonance and off- resonance data in bins of $p_T(K^+)$ and second BDT
- the method provides sensitivity comparable to the SL taging! (but independent sample)
- based on only $63~{\rm fb}^{-1}$ of collected data, much larger sample already collected
- other modes to be included

 $B^0 \to K^0_S \nu \bar{\nu}, B^0 \to K^{*0} (\to K^+ \pi^-) \nu \bar{\nu}, \text{ and } B^+ \to K^{*+} (\to K^+ \pi^0) \nu \bar{\nu}$

- hadronic and SL tag measurements on-going.
- watch this space!

Other upcoming measurements

(Belle)

(BaBar)

 \rightarrow according to MC studies much improved sensitivity @ Belle II \rightarrow competitive results

Summary

- $b \rightarrow s$ transitions are powerful probes of physics beyond the SM.
- Belle II has so far collected $> 400 \text{ fb}^{-1}$ (~equiv. to BaBar datased) of high quality data.
 - $\rightarrow\,$ unique access to several inclusive modes and modes with missing energy
- first published measurements using $< 100 \text{ fb}^{-1}$ show Belle II can already provide competitive results in many areas, including measurements of radiative and EW penguins.
- demonstrated ability to perform inclusive and exclusive measurements of $\,b \to s \gamma$
- limit on $B^+ \to K^+ \nu \bar{\nu}$ competitive with Belle/BaBar already with ~1/10 of data sample size.
- many updates and new results to follow soon.

backup

20

systematics sources

Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*0}[K^0_{\rm S}\pi^0]\gamma$	$K^{*+}[K^{+}\pi^{0}]\gamma$	$K^{*+}[K^0_{\rm S}\pi^+]$
No. of $B\overline{B}$ events	1.6	1.6	1.6	1.6
Photon selection	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$
π^0/η veto	3.8	3.8	3.8	3.8
Pion identification	0.6			0.6
Kaon identification	0.8		0.8	
$K_{\rm S}^0$ reconstruction		2.4		2.4
π^0 selection		3.4	3.4	
Tracking efficiency	1.4	1.4	0.7	1.4
MVA selection	2.0	6.0	2.0	4.0
MC statistics	0.2	0.5	0.3	0.3
PDF shape parameters	1.0	$^{+7.4}_{-5.4}$	$^{+2.4}_{-3.1}$	$^{+0.6}_{-1.4}$
Misreconstructed signal	1.5	$^{+6.8}_{-7.2}$	$^{+4.7}_{-5.9}$	$+2.5 \\ -3.1$
Total	5.3	$^{+13.2}_{-12.4}$	$+7.9 \\ -8.9$	$+7.0 \\ -7.3$

	1	ABLE VI	I. Systematic	uncert	tainties (%)	in each M	X_s mas	s bin.		
M_{X_s} bin	$B\overline{B}$	Detector	Background	Signal	Cross-feed	Peaking	$q\overline{q}$ BG	Frag.	Missing	Total
(GeV/c^2)	counting	response	rejection	PDF	PDF	BG PDF	PDF		proportion	
0.6-0.7	1.4	2.7	3.4	0.0	0.0	0.0	0.0	-	-	4.5
0.7 - 0.8	1.4	2.6	3.4	0.1	12.2	7.8	0.0	-	-	15.3
0.8-0.9	1.4	2.6	3.4	0.2	0.4	0.5	0.0	-	-	4.5
0.9 - 1.0	1.4	2.6	3.4	0.1	0.5	0.4	0.0	-	-	4.5
1.0 - 1.1	1.4	2.6	3.4	0.1	2.9	1.1	0.3	-	-	5.4
1.1 - 1.2	1.4	3.0	3.4	0.4	3.1	1.7	0.2	32.1	1.2	32.1
1.2 - 1.3	1.4	3.2	3.4	0.2	1.6	0.9	0.0	2.1	1.0	5.6
1.3 - 1.4	1.4	3.2	3.4	0.2	1.6	0.2	0.0	2.6	1.9	6.0
1.4 - 1.5	1.4	3.1	3.4	0.2	2.0	0.1	0.0	4.0	1.3	6.7
1.5 - 1.6	1.4	3.3	3.4	0.6	2.2	0.1	0.0	2.4	1.3	6.1
1.6 - 1.7	1.4	3.5	3.4	0.1	1.7	2.1	0.2	2.8	1.9	6.7
1.7 - 1.8	1.4	3.6	3.4	0.1	2.2	1.7	0.2	3.4	1.0	6.8
1.8 - 1.9	1.4	3.7	3.4	0.1	1.9	2.0	0.1	3.6	2.1	7.2
1.9 - 2.0	1.4	3.7	3.4	0.1	4.2	4.0	0.1	3.7	1.6	8.8
2.0-2.1	1.4	3.8	3.4	0.1	5.6	0.6	0.2	17.8	2.2	19.5
2.1 - 2.2	1.4	3.8	3.4	0.3	3.7	2.5	0.4	21.9	1.9	23.1
2.2 - 2.4	1.4	3.8	3.4	0.1	7.4	7.1	0.0	25.5	1.6	28.0
2.4 - 2.6	1.4	3.8	3.4	0.1	11.5	21.8	0.3	29.6	1.0	38.9
2.6 - 2.8	1.4	3.8	3.4	0.1	44.7	101.0	0.9	29.4	2.0	113.9

. THAT TO THE

Belle coll, Phys.Rev.D 91 (2015) 5, 052004, untagged Xsy sum of exclusive, 711 fb-1

 $\mathcal{B}(\overline{B} \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$

Belle coll, Phys.Rev.Lett.103:241801,2009,

untagged $X_{s\gamma}$ inclusive, 605 fb-1

	BF($B \rightarrow$	$X_s \gamma)$	(10^{-4})
$E_{\gamma-\text{Low}}^{\text{B}}$ [GeV]	1.70	1.80	1.90	2.00
Value	3.45	3.36	3.21	3.02
\pm statistical	0.15	0.13	0.11	0.10
\pm systematic	0.40	0.25	0.16	0.11
20 	9. 			Syst
1. Continuum	0.26	0.16	0.10	0.07
2. Selection	0.15	0.12	0.10	0.08
3. π^0/η	0.07	0.05	0.04	0.02
4. Other B	0.25	0.14	0.06	0.02
5. Beam bkgd.	0.03	0.02	0.02	0.01
6. Unfolding	0.01	0.01	0.02	0.02
7. Model	0.01	0.01	0.00	0.01
8. Resolution	0.05	0.03	0.01	0.00
9. γ Detection	0.03	0.02	0.00	0.00
10. $B \to X_d \gamma$	0.01	0.01	0.01	0.01
11. Boost	0.01	0.01	0.02	0.02

BF $(B \to X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$

 $b
ightarrow s\gamma$

Table 6: Projected statistical and systematic (absolute) uncertainties of relevant observables from $B \to K^* \gamma$ decays.

Observable	1 ab^{-1}	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	Systematic uncertainty
$\Delta_{0+}(B \to K^* \gamma)$	1.3%	0.6%	0.4%	0.2%	1.2%
$A_{CP}(B^0 \to K^{*0}\gamma)$	1.4%	0.6%	0.5%	0.2%	0.2%
$A_{CP}(B^+ \to K^{*+}\gamma)$	1.9%	0.9%	0.6%	0.3%	0.2%
$\Delta A_{CP}(B \to K^* \gamma)$	2.4%	1.1%	0.7%	0.3%	0.3%

Table 5: Projected fractional uncertainties of the $B \to X_s \gamma$ branching fraction measurement for various E_{γ}^B thresholds. The systematic uncertainty is presented for a baseline scenario when the remaining background is known to the 10% level, and an improved scenario, when the background is known to the 5% level.

Lower E^B_{γ} threshold	Statistical uncertainty				Baseline (improved)	
1	1 ab^{-1}	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	syst. uncertainty	
1.4 GeV	10.7%	6.4%	4.7%	2.2%	10.3% (5.2%)	
1.6 GeV	9.9%	6.1%	4.5%	2.1%	8.5% (4.2%)	
1.8 GeV	9.3%	5.7%	4.2%	2.0%	6.5%(3.2%)	
2.0 GeV	8.3%	5.1%	3.8%	1.7%	3.7% (1.8%)	

 $R(K^{(\star)})$

E. Manoni @ Moriond 22

Belle II

• Signal yield extracted from 2D fit to M_{bc} and ΔE

• Branching fraction in entire q^2 range excluding J/ ψ and $\psi(2S)$ resonances:

$$\begin{split} \mathcal{B}(B \to K^* \mu \mu) &= (1.19 \pm 0.31 \pm ^{+0.08}_{-0.07}) \times 10^{-6}, \\ \mathcal{B}(B \to K^* ee) &= (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}, \\ \mathcal{B}(B \to K^* \ell \ell) &= (1.25 \pm 0.30 \pm ^{+0.08}_{-0.07}) \times 10^{-6}, \end{split}$$

- Precision for electron and muon channels in the same ballpark
- Limited by sample size
- Electron channel "only" 2.5σ worst wrt PDG, expected to became competitive with 1 ab⁻¹
- Will provide essential independent check of anomalies with few 1/ab

$B \rightarrow K^* \ell \ell$ systematics table

Source	Systematic (%)
signal shape	~ 1.0
muon identification	+1.9 -0.8
electron identification	$^{+0.9}_{-0.5}$
kaon identification	0.4
pion identification	2.5
K_S^0 identification	2.0
π^0 identification	3.4
FastBDT	1.3 - 1.7
limited MC statistics	< 0.5
signal cross feed	$\sim 1\%$
tracking	1.2 - 1.5
$f^{+-(00)}$	1.2
number of $B\bar{B}$ pairs	2.9
Total	+6.7 -6.0

 $\frac{25}{R(K^{(\star)})}$

$B^+ \to K^+ \nu \bar{\nu}$

Belle II physics for Snowmass

Table 3: Baseline (improved) expectations for the uncertainties on the signal strength μ (relative to the SM strength) for the four decay modes as functions of data set size.

FF in MC model arXiv:1409.4557

Projections – radiative

The Belle II Physics Book, PETP 2019, 123C01 (2019)

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	0.25%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$	4.0%	1.5%	0.48%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$\Delta_{0+}(B o K^* \gamma)$	2.0%	0.70%	0.53%
$A_{CP}(B^0 \to K^{*0}\gamma)$	1.7%	0.58%	0.21%
$A_{CP}(B^+ o K^{*+}\gamma)$	2.4%	0.81%	0.29%
$\Delta A_{CP}(B \to K^* \gamma)$	2.9%	0.98%	0.36%
$S_{K^{*0}\gamma}$	0.29	0.090	0.030

Projections – EW penguin

Belle II

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${ m Br}(B^+ o K^+ au^+ au^-) \cdot 10^5$	< 32	< 6.5	< 2.0
${ m Br}(B^+ o K^+ au^\pm e^\mp) \cdot 10^6$	-	-	< 2.1
${ m Br}(B^+ o K^+ au^\pm \mu^\mp) \cdot 10^6$	_	-	< 3.3

tagged analysis ONLY!

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} u ar{ u})$	< 180%	26%	9.6%
${ m Br}(B^+ o K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 o K^{*0} u ar{ u})$	_	—	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$R_K \; ([1.0, 6.0] { m GeV^2})$	28%	11%	3.6%
$R_K \ (> 14.4 { m GeV^2})$	30%	12%	3.6%
$R_{K^*}~([1.0, 6.0]{ m GeV^2})$	26%	10%	3.2%
$R_{K^*} \ (> 14.4 { m GeV^2})$	24%	9.2%	2.8%
$R_{X_s}~([1.0, 6.0]{ m GeV^2})$	32%	12%	4.0%
$R_{X_s} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%

Belle II luminosity projection

