Recent Dark Sector results at Belle II

Giacomo De Pietro

for the Belle II collaboration

Dark Matter

Dark Matter coupling to Standard Model

Different possible portals between **Dark Matter** and **Standard Model** depending on the **dark mediator X**:

> Vector portal \rightarrow Dark Photon / Z' Scalar portal \rightarrow Dark Higgs / Dark Scalar Pseudoscalar portal \rightarrow Axion-Like Particles (ALPs) Neutrino portal \rightarrow Sterile Neutrinos

Dark Matter coupling to Standard Model

SuperKEKB: a new Intensity Frontier machine

SuperKEKB is a **super** B-factory located at KEK (Tsukuba, Japan)

It's an asymmetric e⁺e⁻ collider operating mainly at 10.58 GeV (Υ(4S), but possible runs from Υ(2S) to Υ(6S))

G. De Pietro

SuperKEKB: a new Intensity Frontier machine

Belle II: a new Intensity Frontier detector

7

SuperKEKB and Belle II operations

First collisions: 26th April 2018

Collected 0.5 fb⁻¹ in 2018

- pilot run (without VXD detector)

Collected about 424 fb⁻¹ since 2019

- 363 fb $^{\scriptscriptstyle -1}$ at the $\Upsilon(4S)$ resonance
- 61 fb⁻¹ off-resonance

G. De Pietro G. De Pietro

NEW – from ICHEP

$\tau^{\pm} \rightarrow (e^{\pm}/\mu^{\pm}) \alpha$; $\alpha \rightarrow invisible$

Can enter from NP models such as light ALP \rightarrow our search is, however, spin-insensitive

Best upper limits on $B(\tau \rightarrow l\alpha)/B(\tau \rightarrow l\nu\overline{\nu})$ from ARGUS (476 pb⁻¹, Z. Phys. C 68 (1995) 25)

From phenomenology: consistency of $B(\tau{\rightarrow}{\rm l}\nu\bar{\nu})$ with SM predictions

With current data, Belle II can already set more stringent limits

$\tau^{\pm} \rightarrow (e^{\pm}/\mu^{\pm}) \alpha$ - Reconstruction

Dataset: 62.8 fb⁻¹

Split event in two emispheres across thrust axis

```
Require exactly 4 tracks:
```

- 1 lepton on signal side
- 3 pions on tag side
- veto neutrals (γ , $\pi^0)$ for reducing hadronic background
- $\tau \rightarrow l\alpha$ events are indistinguishable from $\tau \rightarrow l\nu\overline{\nu}$ (irreducible background)

Look for a "peak" in lepton spectra computed in the τ pseudo-mass frame:

$\tau^{\pm} \rightarrow (e^{\pm}/\mu^{\pm}) \alpha$ – Data and MC spectra

Final spectra computed in the τ pseudo-mass frame: $\hat{p}_{\tau} \approx -\frac{\overrightarrow{p}_{tag}}{|\overrightarrow{p}_{tag}|} E_{\tau} \approx \sqrt{s/2}$

High purity (96% for electron channel, 92% for muon channel)

 \rightarrow efficiency between 9% and 17% depending on M_{α}

G. De Pietro

NEW – from ICHEP

$\tau^{\pm} \rightarrow (e^{\pm}/\mu^{\pm}) \alpha - \text{Results}$

No signal observed \rightarrow set 95% CL upper limits

Largest systematics from particle identification

Most stringent measurements in these channels to date

NEW – from ICHEP

Z' / S / ALP $\rightarrow \tau^+\tau^-$

We searched for a $\tau^+\tau^-$ resonance in $\mu^+\mu^-\tau^+\tau^-$ final states $\rightarrow M(\tau\tau) = M_{\text{recoil}}(\mu\mu)$

We probed three different models:

- $Z' \ L\mu L\tau \ \text{model}$
 - JHEP 12 (2016) 106 (theo. paper)
 - vector portal
 - first time search in $\tau\tau$

Leptophilic dark scalar S model

- PRD 95 (2017) 075003
 - (theo. paper)
- Yukawa couplings
- constraints by BaBar in $S{\rightarrow}\mu\mu$
- first time search in $\tau\tau$

- $\mathrm{ALP} \to \tau\tau$
 - arXiv:2110.10698 (theo. paper)
 - $C_{ee}{=}C_{\mu\mu}{=}C_{\tau\tau}$; $C_{\gamma\gamma}{=}C_{Z\gamma}{=}0$
 - Yukawa-like effective couplings
 - ALP- τ coupling unconstrained

Z' / S / ALP $\rightarrow \tau^+\tau^-$ - Reconstruction

Dataset: 63.3 fb⁻¹

Basic selections:

- considering only 1-prong τ decays
 - \rightarrow require 4 tracks
- 2μ + $2e/\mu/\pi$
- M(4 tracks) < 9.5 GeV
- allowed neutrals
- scan $M_{\text{recoil}}(\mu\mu)$

Main backgrounds:

- $\tau^{+}\!\tau^{-}\!(\gamma)$ (1x3-prongs events)
- $q\overline{q}$
- $l^+l^-l^+l^-$ (no ISR in our simulation)

- $\mu^+\mu^-\pi^+\pi^-$ + $e^+e^-X_{had.}$ (not simulated) G. De Pietro

Z' / S / ALP $\rightarrow \tau^+\tau^-$ - Reconstruction

Dataset: 63.3 fb⁻¹

Basic selections:

- considering only 1-prong τ decays
 - \rightarrow require 4 tracks
- 2μ + $2e/\mu/\pi$
- M(4 tracks) < 9.5 GeV
- allowed neutrals
- scan $M_{\text{recoil}}(\mu\mu)$

Main backgrounds:

- $\tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -} (\gamma)$ (1x3-prongs events)
- $q\overline{q}$
- $l^+l^-l^+l^-$ (no ISR in our simulation)

- $\mu^+\mu^-\pi^+\pi^-$ + $e^+e^-X_{had.}$ (not simulated) G. De Pietro

\rightarrow 8 NN ranges in M_{recoil}(µµ) **Belle II** simulation **Belle II** simulation --- ττ — ττ a<u>a</u> eeuu Signa Signal 0.05 Entries Entries 0.03 J. Marchar Contraction 0.02 ᠉ᡙᢦᢦᠬᡁᡗᡫᡔᡙ_ᢦᡘᡅᡅᠬ_ᠥ 0.01 A = (d1 - d2)/(d1 + d2) $\alpha(p(\mu)_{MAX}, T)$ **Belle II** simulation 0.035 Signa Entries 0.01 0.005 1.2 Selection optimized for $Z^{\prime} {\rightarrow} \tau^{+} \tau^{-}$ signal

Background suppression via dedicated Neural Network

 \rightarrow achieved 99% background reduction

Z' / S / ALP $\rightarrow \tau^+\tau^-$ - Data and MC spectra

Discrepancies expected and understood due to missing features in simulation

Smooth distribution and no peaking structures in $M_{recoil}(\mu\mu)$ \rightarrow NB: signal mass resolution from 1.5 MeV to 30 MeV

G. De Pietro

7

Summary

- ✓ Belle II collected about 424 fb⁻¹ of collisions data
- r Presented here world-leading results for searches of:
 - $\tau^{\pm} \rightarrow \left(e^{\pm} \, / \, \mu^{\pm} \right) \, \alpha$, with $\alpha \rightarrow invisible$
 - leptophilic dark scalar S \rightarrow $\tau^+\tau^-$ / ALP \rightarrow $\tau^+\tau^-$
- More results will be presented by M. Campajola in his plenary talk
 - Dark Higgsstralung $e^+e^-\!\!\to A'h'$, with $A'\!\to\!\!\mu^+\mu^-$ and h' invisible
 - Invisible Z' within the $L_{\mu}-L_{\tau}$ model
- Belle II will lead the field in the Dark Sector searches in the MeV-GeV mass range in the coming years

Thank you for your attention

Backup slides

B-factories as Intensity Frontier experiments

B-factories are dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent $B\overline{B}$ pairs.

First generation of B-factories (collected about 1.5 ab⁻¹ of integrated luminosity)

The strenghts of a B-factory are:

- constrained kinematics;
- clean environment and lower background;
- hermetic detector;
- excellent PID capabilities;
- efficienct reconstruction of neutral particles.

B-factories as Intensity Frontier experiments

B-factories are dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent $B\overline{B}$ pairs.

SuperKEKB machine parameters

Parameter	KEKB Design	KEKB Achieved	SuperKEKB Design
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β_{y}^{*} (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
$\mathcal{E}_{x}(\mathrm{nm})$	18/18	18/24	3.2/5.3
$\frac{\epsilon_{y}}{\epsilon_{x}}$ (%)	1	0.85/0.64	0.27/0.24
$\sigma_y (\mu m)$	1.9	0.94	²⁰ → 0.048/0.062
ξ	0.052	0.129/0.090	0.09/0.081
σ_{z} (mm)	4	6/7	6/5
I_{beam} (A)	2.6/1.1	1.64/1.19 —	x2 3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity $(10^{34} cm^{-2} s^{-1})$	1.0	2.11	80

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_y^*}\right) \left(\frac{R_L}{R_{\xi_{y\pm}}}\right)$$

Cross sections at a B-factory

Physics process	Cross section [nb]	Selection Criteria	Reference	
$\Upsilon(4S)$	1.110 ± 0.008	с.	[2]	
$uar{u}(\gamma)$	1.61	-	KKMC	
$d\bar{d}(\gamma)$	0.40	-	KKMC	
$sar{s}(\gamma)$	0.38	-	KKMC	
$car{c}(\gamma)$	1.30	-	KKMC	
$e^+e^-(\gamma)$	$300 \pm 3 \text{ (MC stat.)}$	$10^{\circ} < \theta_e^* < 170^{\circ},$	BABAYAGA.NLO	
		$E_e^* > 0.15 \mathrm{GeV}$		
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \text{GeV}/c$ and e in	-	
		ECL		
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC \ stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$	BABAYAGA.NLO	
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$		
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \text{GeV}$ in ECL	-	
$\mu^+\mu^-(\gamma)$	1.148		KKMC	
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-	
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	-	
		$\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV})$ in I	ECL	
$\tau^+\tau^-(\gamma)$	0.919	-	KKMC	
$ uar{ u}(\gamma)$	0.25×10^{-3}	-	KKMC	E. Kou, P. Urquijo et al.,
$e^+e^-e^+e^-$	$39.7\pm0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH	arXiv:1808.10567
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC \ stat.})$	$W_{\ell\ell} > 0.5{\rm GeV}/c^2$	AAFH	

G. De Pietro

Belle II: a new Intensity Frontier detector

Electromagnetic Calorimeter (ECL)

Electromagnetic Calorimeter (ECL)

Material budget in front of ECL:

A rule of thumb...

The masses of the mediator and of the DM candidates lead to **different type of searches**.

$ALP \rightarrow \gamma\gamma \text{ - Model}$

Axion-Like Particles (ALPs) are pseudoscalar particles (a) that couple to bosons.

Unlike QCD Axions, ALPs have no relation between mass and coupling.

Belle II focused on the coupling to photons:

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad \tau_a \sim 1/g_{a\gamma\gamma}^2 m_a^3$$

Investigating the photon coupling $\mathbf{g}_{\mathrm{a\gamma\gamma}}$ in ALP-strahlung

First search at B-factories

ALP $\rightarrow \gamma \gamma - Reconstruction \& Data/MC spectra$

ALP $\rightarrow \gamma \gamma$ - Results

Search conducted with 445 pb⁻¹ of 2018 pilot run data:

- 500 fits in sliding ranges with steps of half mass resolution;
- no excess observed (largest local significance: 2.8 σ).

PRL 125 (2020) 161806