

Identification of Dark Matter IDM2022

Vienna - July 18-22, 2022

Searches for dark sector particles in LHCb/Belle II

On behalf of the LHCb and Belle II collaborations

Marcello Campajola INFN Napoli – Belle II marcello.campajola@na.infn.it

Motivations & Models

The absence of DM discoveries at LHC or direct detection experiments motivate the strong interest for models with **low-mass dark matter** candidates or mediators.

A possible MeV - GeV theoretical scenarios:

- Light DM feebly interacting with SM through a new light mediator ('portal')
- There is a small number of possible portal interactions between Dark Sector and SM (e.g. [1]);

$$\succ \quad \mathcal{L}_{\text{portals}} = -\frac{\epsilon}{2} B^{\mu\nu} A'_{\mu\nu} - H^{\dagger} H (AS + \lambda S^2) - Y_N^{ij} \bar{L}_i H N_j + \cdots$$

Vector portal

Higgs portal Neutrino portal + Psuedoscalar portal

Not just solving the DM puzzle. Could explain:

- some astrophysics anomalies (positron excess, 3.5 keV line, ...)
- the $(g-2)_{\mu}$ anomaly
- some flavour anomalies: R_{K(*)}, R_{D(*)} (LHCb, Belle, ..)

Non-gravitational SM interaction with matter Porta **Dark Secto** Dark matter; Dark Forces:

Collider strategies

Searches at collider usually focused on mediators rather than DM itself.

Two strategies:

Signatures

In most of the models life-time is proportional to some inverse power of the coupling and of the mediator mass

Different possible signatures depending on:

- mediator and DM mass hypothesis
- mediator life-time -> decay length

Prompt decay to SM:

visible signature -> invariant mass bump

Long lived:

- decay-length < O(1)m: visible signature -> displaced vertex
- decay-length > O(1)m: invisible signature -> missing momentum

Decay to DM particle:

• invisible signature -> missing momentum

Decay to SM + DM particles:

partially visible signature -> displaced vertex not pointing to the IP

in-flight visible/invisible decay to SM/DM

decay to DM

Invisible

prompt visible decay

LHCb and Belle II experiments

LHCb

Experiment overview

LHCb is a single-arm forward spectrometer (along the beamline) at the LHC collider:

HCb Detector

RICH1

Tracking

Dipole

Magnet

Mass resolution: ~ 7-20 MeV

Track momentum resolution: 0.5% to 1%

Station

Vertex

Locator

vertex

resolution: 10µm

Electromagnetic

RICH2

Tracking

Stations

Hadronic

Calorimeter

Calorimeter

- pp collisions at \sqrt{s} = 7; 8; 13 TeV
- Luminosity 4 x 10³² cm⁻²s⁻¹ (1/20 1/8 of ATLAS/CMS)
- Cover the region 2 < η < 5 (~ 1 15°)
 - Large $b\overline{b}$ quark pairs produced in the forward region

Data taking:

- 9 fb⁻¹ collected to date
- Target: 50 fb⁻¹ by 2030

Key factors for dark sector physics:

- Excellent vertexing
- Excellent momentum and mass resolution
- Good PID capabilities
- Triggers with low p^t thresholds (ex: p_{μ}^{T} > 1.5 GeV)

Muon

Stations

LHCb

Experiment overview

LHCb is a single-arm forward spectrometer (along the beamline) at the LHC collider:

- pp collisions at \sqrt{s} = 7; 8; 13 TeV
- Luminosity 4 x 10³² cm⁻²s⁻¹ (1/20 1/8 of ATLAS/CMS)
- Cover the region 2 < η < 5 (~ 1 15°)
 - Large $b\overline{b}$ quark pairs produced in the forward region

Data taking:

- 9 fb⁻¹ collected to date
- Target: 50 fb⁻¹ by 2030

Key factors for dark sector physics:

- Excellent vertexing
- Excellent momentum and mass resolution
- Good PID capabilities
- Triggers with low p^t thresholds (ex: p_{μ}^{T} > 1.5 GeV)

Belle II

Experiment overview

Belle II is a ~ 4π detector @ SuperKEKB collider (Tsukuba, JP):

- e^+e^- collision at the $\sqrt{s} = 10.58$ GeV (= $m_{Y(4s)}$)
- Asymmetric beam energies: Boosted BB
- Large luminosity: world record 4.7×10^{34} cm⁻² s⁻¹
 - Final goal is $\sim 6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Data taking:

- First collisions in 2018 (commissioning) ٠
- \sim 430 fb⁻¹ collected to date
- Target: 50 ab⁻¹ in the next decade ٠

Key factors for dark sector physics:

- High luminosity
- Well defined initial state, clean environment
- Hermetic detector, excellent PID
- Dedicated trigger for low multiplicity final states:
 - E.g., single photon, single muon, single track;

Belle II

Experiment overview

Belle II is a ~4 π detector @ SuperKEKB collider (Tsukuba, JP):

- e^+e^- collision at the $\sqrt{s}=10.58~{
 m GeV}~(=m_{Y(4s)})$
- Asymmetric beam energies: Boosted $B\overline{B}$
- Large luminosity: world record $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Final goal is $^{\sim}6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Data taking:

- First collisions in 2018 (commissioning)
- ~ 430 fb⁻¹ collected to date
- Target: 50 ab⁻¹ in the next decade

Key factors for dark sector physics:

- High luminosity
- Well defined initial state, clean environment
- Hermetic detector, excellent PID
- Dedicated trigger for low multiplicity final states:
 - E.g., single photon, single muon, single track;

K, and muon detector

Dark sector searches results

Disclaimer: non exhaustive talk, personal selection of some recent results

Z' searches ($L_{\mu} - L_{\tau}$ model)

Phenomenology

New massive vector boson Z' coupling only to the 2nd and 3rd generation of leptons ($L_{\mu} - L_{\tau}$ model)

May explain [1], [2]:

- $(g-2)_{\mu}$ anomaly
- DM phenomenology
- B-physics anomalies: e.g., R_{K} , R_{K^*}

Experimental signatures:

- Visible decay into a muon ortau pair,
 - Previous constraints from <u>BaBar(2016)</u>, <u>CMS(2019)</u>, <u>Belle(2022)</u> and neutrino-nucleus scattering experiments (<u>CCFR and CHARM</u>)
- Invisible decay to SM neutrinos or DM
 - Previous results from <u>Belle II (2020)</u>, <u>NA64-e(2022)</u>

Vector porta

brand new

(2)

Belle II

```
[1] Shuve et al., <u>Phys. Rev. D 89 (2014)</u>
[2] Altmannshofer et al., <u>JHEP 106 (2016)</u>
```

Strategy

Search for $e^+e^- ightarrow \mu^+\mu^- Z'$, Z' ightarrow invisible

- First measurement with 2018 dataset: ~279 pb⁻¹
- New analysis with 2019-20 dataset: ~ 79.7 fb⁻¹

Signature:

• A peak in the recoil mass distribution against two muons

Background:

- SM processes with 2 particles identified as muons and missing momentum
 - mainly due to $\mu\mu(\gamma)$, $\tau\tau$, $ee\mu\mu$

Analysis selection in short:

- Two opposite sign muon tracks; $p_T^{\mu\mu} > 0.1$ GeV/c
- Recoil points to barrel calorimeter ($M_{recoil} < 2 \text{ GeV}$)
- Low activity in the calorimeter; γ veto
- Neural-Network exploiting FSR nature of Z' production Eur.Phys.J.C 82 (2022) 2, 121

Much higher luminosity; Analysis strategy improved; New triggers.

 e^{\dagger}

Results

Background composition:

- $\mu\mu(\gamma)$ dominates up to 7 GeV/c²
- *eeµµ* dominates for high masses
- $\tau\tau$ almost 100% up to ~7 GeV/c²

Search strategy:

• Fitting over the 2d distribution θ_{recoil} vs. M_{recoil}^2

Results

No significant excess over the expected background

Set 90% CL exclusion limits on cross section and coupling

- World-leading UL for a fully invisible Z' (100% BR to invisible)
 - First excluding a fully invisible Z' boson as an explanation of the $(g 2)_{\mu}$ anomaly for 0.8 < M_{Z'} < 5 GeV/c²

IDM2022 – Searches for dark sector particles in LHCb/Belle II (M. Campajola)

Dark Photon

Phenomenology

Hypothetical massive gauge boson A' of spin = 1 coupling to the SM hypercharge through the kinetic mixing with strength ε [1,2]

Several possible production mechanisms:

ISR, Drell-Yan, meson decay, dark Higgsstrahlung

Two basic scenarios depending on A' vs DM masses relationship:

- m_x > ¹/₂ m_{A'} → A' visible decays to SM particles
 m_x < ¹/₂ m_{A'} → A' invisible decays to LDM

Dark photon lifetime proportional to $1/(\epsilon^2 m'_A)$

Dark Photon @LHCb

Visible decay

٠

•

٠

LHCb ГНСр

Dark Photon @LHCb

Prompt decay results

PRL 120 (2018) 061801 PRL 124 (2020) 041801

- Scan the spectrum in steps of $\sigma[m(\mu^+\mu^-)]/2$ and fit for the signal over a large background
- Regions with known resonances are removed
- isolation cut applied only above 1 GeV/c²

Background is estimated mostly with data-driven techniques:

*validated on $m(\phi)$ and $m(\Upsilon(1S))$

No significant excess found

90% CL UL on ϵ^2

• Most stringent limits for 214 < m_{A^\prime} < 740 MeV/c² and 10.6 < m_{A^\prime} < 30 GeV/c²

1.1GeV

Dark Photon @LHCb

Material

Displaced decay results

Currently only within the VELO: max displacement < 20 cm

Main background:

- γ conversion in the VELO
 - Precise knowledge material location needed to reduce it
- B-hadron decays with 2μ and misID $K^0_S
 ightarrow \pi^+\pi^-$

Use simulation to find relative $A'/\gamma *$ decay-time inefficiency

Fit in bins of mass and lifetime and use of consistency of decay topology

No significant excess found

90% CL UL on ϵ^2

First non-fixed-target constraint from displaced signature search

Special beam-gas runs: high-precision material map to veto

Probe additional dark sectors in di-muon resonance:

- 2016-2018 data set: 5.1 fb⁻¹
- Explored $2m_u < m(X) < 60 \text{ GeV}$

Topologies investigated:

- Inclusive prompt
- Prompt +b-jet
- Displaced pointing
- Displaced non pointing

Strategy:

- Minimize assumptions on production;
 - drop kinetic mixing assumption with γ^{\ast}
- Obtain results in bins of mass and p^T

No isolation requirements

Non-zero width considered

Displaced (prompt source)

Inclusive $X \rightarrow \mu^+ \mu^-$ search @LHCb <u>JHEP 10 (2020) 156</u>

10

m(X) [GeV]

10 pb

1 pb

100 fb

10 fb

1 fb

No excess found

Model independent UL on cross section in bins of mass and p^T

 p_{T} [GeV] LHCb

50

Prompt search results to constraint 2HDM + complex scalar singlet X (model from: PRD 93, 055047 (2016))

world-best upper limit on X mixing angle with SM Higgs θ_H

1

Dark Higgsstrahlung searches Vector porta

Next to minimal dark photon model.

• A' mass generated via spontaneous symmetry breaking, by adding a dark Higgs boson h' to the theory [1]:

Both the particles (A', h') can be produced at an $e^+ e^-$ collider via the dark Higgsstrahlung process.

Mass hierarchy scenarios:

• $M_{h'} > M_{A'}$:

Introduction

- $h' \rightarrow A'A'$
- Signature: 6 charged tracks;
- Investigated by **BaBar(2012)** and **Belle(2015)**
- $M_{h'} < M_{A'}$:
 - h' is long-lived -> invisible. ٠
 - Signature: two tracks and missing energy ۲
 - Probed by KLOE(2015). ٠

 $\sigma \propto \epsilon^2 \times \alpha_D$ h $e^+e^- \rightarrow A'^* \rightarrow h'A'$ M_h, **Belle II** KLOE M_A,

[1] B. Batell, et al., *Phys. Rev. D* 79, 115008 (2009)

Dark Higgsstrahlung @ Belle II

 $M_{\rm rec}^2$ [GeV²/c⁴]

Search performed with 2019 data -> 8.34 fb^{-1}

Signature:

Strategy

- Two opposite sign muons + missing energy
- 2D peak in $M^2_{\mu\mu}$ vs M^2_{recoil} :
 - scan and count in search windows
 - ~9000 2D elliptical windows _

Backgrounds mainly due to $\mu\mu(\gamma)$, $\tau\tau$, $ee\mu\mu$

Analysis in short:

- Two opposite sign muons, $p_T^{\mu\mu} > 0.1$ GeV/c
- Recoil points to barrel calorimeter
- Low activity in the calorimeter
- Final suppression exploiting helicity angle
 - $C_{\eta} = |\cos(\theta_{helicity})|$ flat for signal, peak at 1 for bkg

Dark bosons in $b \rightarrow s$ @LHCb

 K^{*}/K^{+}

Strategy

Flavour-changing neutral currents to search for new physics

Run1 dataset (3 fb⁻¹) used to reach for:

- $B^0 \to K^{*0} \gamma$ [PRL 115 (2015) 161802]
- [PRD 95 (2017) 071101 (R)] • $B^+ \to K^+ \chi$

Scalar (Higgs) portal (χ as inflaton)

https://doi.org/10.1007/JHEP05%282010%29010

Rate and lifetime controlled θ mixing angle with SM Higgs

Allow for prompt and detached di-muon candidates

 $\mathcal{B}(B^+ \to K^+ \chi) \propto \theta^2$ $\tau \propto 1/\theta^2$

Dark bosons in $b \rightarrow s$ @LHCb

No evidence for a signal Constraints on mixing angle θ^2 between the Higgs and χ in the inflaton model

• Large fraction of allowed inflaton parameter space ruled out.

Future prospects

some highlights

Dark Photon searches

Prospects @Belle II and @LHCb

Light scalars in $b \rightarrow s$ transitions @ Belle II Prospects

Long-lived h' produced in $b \rightarrow s$ transition

- h' mixes with the Standard Model Higgs boson with angle θ
- prompt K + two opposite signed tracks from a displaced vertex
 - Separately for different exclusive final states: $\mu\mu$, $\pi\pi$, KK, $\tau\tau$

Strategy: Search for a bump in the invariant mass of tracks coming from a displaced vertex

Belle II could have a better reach wrt LHCb thanks to the lower boost: longer mediator life-times -> smaller couplings

Exclusion regions expected ________ with 50/ab at Belle II

Belle II can an also perform:

- $B \rightarrow K + invisible$
- B ightarrow Ka (a ightarrow $\gamma\gamma$)

 \rightarrow Both prompt and displaced ALP decay

Conclusions

LHCb and Belle II have an extensive program of searches in the Dark Sector and provided complementary competitive limits on several models

Shown results on :

- Prompt and displaced visible dark photon search
- Inclusive dimuon resonance search
- Dark scalar in $b \rightarrow s$ transition search
- Invisible Z' search

• Dark Higgsstrahlung

 $\tau^+\tau^-$ resonance search

Increased luminosity, upgraded detectors and better analysis strategies will improve existing limits and provide soon new results.

Highlights on future strategies:

- for LHCb
- for Belle II

Spares

Signatures @ colliders

Different possible topologies depending on the **mediator** and **DM candidate mass** hypothesis:

- If DM kinematically accessible: invisible decay
 - search for missing energy signature;
- If decay to SM: visible decay
 - bump hunt search;

Signatures @ colliders

An additional player: mediator lifetime.

For most of the models life-time is proportional to some inverse power of the coupling and of the mediator mass

lifetime decay length

If decay to SM:

- Short lifetime: prompt decay;
- Long lifetime:
 - Displaced decay vertices;
 - Decay outside the detector (invisible)

Competition and Complementarity

Caveat: generic statements, impact is analysis dependent

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2027	~25	~50,000
Background level	High	Low
Typical efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Very good
Collision spot size	Large ($10 \times 10 \times 10^5 \mu m^3$)	Tiny (6×0.06× $10^2 \mu m^3$)
LLP-sensitive Size	Large	Small
Typical boost of LLP	Large	Small
Mass reach	High	Low
au physics capability	Limited	Excellent

Belle II detector

SuperKEKB luminosity

Luminosity schedule

Collected luminosity up to now

IDM2022 – Searches for dark sector particles in LHCb/Belle II (M. Campajola)

Belle II trigger

Performances

essential for dark-sector and tau physics

- typical signatures include low-multiplicity of tracks, and energy deposits in EM calorimeter
- large background from radiative Bhabha and two-photon processes

some of the dedicated low-multiplicity triggers:

- single muon
 - combine drift chamber and muon detector information
- single track:
 - neural-net based hardware trigger
- single photon:
 - high efficiency for $E(\gamma) > 1$ GeV

LHCb Upgrade I

Major upgrade of all subdetectors, target $L_{peak} = 2x10^{33} \text{ cm}^{-2} \text{ s}^{-1}$,

 9 fb-1
 Upgrade I
 Goal: 50 fb-1

 Run 1
 LS1
 Run 2
 LS2
 Run 3
 LS3
 Run 4

 2010 2011 2012
 2013 2014
 2015 2016 2017 2018
 2019 2020 2021
 2022
 2023 2024 2025
 2026 2027 2028
 2029 2030 2031 2032

CERN-LHCC-2012-007

Increase granularity and longevity of 3 new trackers

5x higher inst. lumi. to 2×10^{33} cm⁻²s⁻¹ 5 visible interactions/crossing

LHCb Upgrade I

Major upgrade of all subdetectors, target $L_{peak} = 2x10^{33} \text{ cm}^{-2} \text{ s}^{-1}$,

New software trigger based detector for Run 3: 40MHz readout Removal of first muon station, preshower and All electronics replaced in all subsystems scintillating pad detectors • Pile-up of 6 (used to be ~1.5) **New Scifi** New Upstream tracker UT. New VELO VELO **R**CH Magnet • New optics + new photo-New photo-SciFi • detectors detectors **MUON** RICH 2

LHCb trigger

- · Lower luminosity (and low pile-up)
 - ~1/8 of ATLAS/CMS in Run 1
 - ~1/20 of ATLAS/CMS in Run 2
- Real-time reconstruction for all charged particles with pT > 0.5 GeV
- Real-time calibration & alignment
- **Full real-time** reconstruction for all particles available to select events
- We go from 1 TB/s (post zero suppression) to 0.7 GB/s (mix of full + partial events)
- LHCb will move to a trigger-less readout system for LHC Run 3 (2021-2023), and process
 TR (a in real time on the CDL form)

LHCb Upgrade I

L0 hardware has been removed, a full software trigger will process 30 MHz of inelastic collisions \rightarrow factor of ~10 expected in hadronic yields at Run 3

Displaced vertex at LHCb.

- Ourrently only within VELO
 O
 - Displacement < 20 cm (but with boost)
- Could extend to *downstream tracks*
 - Displacement < 200 cm
 - Worse vertex and *p* resolution (*m*(ππ) resolution 2× larger)
 - Being optimised in the trigger

[LHCb-PUB-2017-005]

Backgrounds in VELO

- ${\scriptstyle \textcircled{o}}$ Heavy Flavour displaced decays
 - $\tau(B) \sim 1.5 \text{ ps}, \beta \gamma \sim 10 \Rightarrow \text{few mm}$
- Thin VELO envelope (RF foil)
 - <5 mm: background mainly from heavy-flavour background
 - >5 mm: background mainly from material interaction

IDM2022 – Searches for dark sector particles in LHCb/Belle II (M. Campajola)

Invisible Dark Photon searches @ Belle II

Prospects

In case of DM kinematically accessible we can expect $BR(A' \rightarrow \chi \chi) = 1$

• Invisible searches of fundamental importance

Signature:

- Only one mono-chromatic high-E photon γ_{ISR} ;
- Bump in the photon energy:

SM backgrounds: $ee \rightarrow \gamma\gamma(\gamma)$, $ee \rightarrow ee(\gamma)$, Cosmics;

Requires a single photon trigger:

• Bottleneck for previous B-factories;

Expected to perform better than BaBar due to:

- no ECL cracks pointing to the interaction regions;
- Trigger threshold lower than in BaBar;
- KLM veto;
- Smaller boost;

 10^{-2}

 10^{-3}

ω

10

Dark Photon @LHCb

Results

$m(\mu\mu)$ for the four signature:

Model independent upper limits at 90% CL on $\sigma(X \rightarrow \mu\mu)$

 $p_{\mathrm{T}} \; [\,\mathrm{GeV}\,]$

Table 1: Fiducial regions of the searches for prompt and displaced $X \rightarrow \mu^+ \mu^-$ decays.

All searches	$\begin{array}{l} p_{\rm T}(\mu) > 0.5 {\rm GeV} \\ 10 < p(\mu) < 1000 {\rm GeV} \\ 2 < \eta(\mu) < 4.5 \\ \sqrt{p_{\rm T}(\mu^+)p_{\rm T}(\mu^-)} > 1 {\rm GeV} \\ 5 \le n_{\rm charged}(2 < \eta < 4.5, p > 5 {\rm GeV}) < 100 \mbox{ (from same PV as } X) \end{array}$
Prompt $X \to \mu^+ \mu^-$ decays	$\begin{array}{l} 1 < p_{\rm T}(X) < 50 {\rm GeV} \\ X \ {\rm decay} \ {\rm time} < 0.1 {\rm ps} \\ \alpha(\mu^+\mu^-) > 1 {\rm mrad} \\ 20 < p_{\rm T}(b\mbox{-jet}) < 100 {\rm GeV}, \ 2.2 < \eta(b\mbox{-jet}) < 4.2 \ (X+b \ {\rm only}) \end{array}$
Displaced $X \rightarrow \mu^+ \mu^-$ decays	$\begin{array}{l} 2 < p_{\mathrm{T}}(X) < 10 \mathrm{GeV} \\ 2 < \eta(X) < 4.5 \\ \alpha(\mu^+\mu^-) > 3 \mathrm{mrad} \\ 12 < \rho_{\mathrm{T}}(X) < 30 \mathrm{mm} \\ X \ \mathrm{produced} \ \mathrm{in} \ pp \ \mathrm{collision} \ (\mathrm{promptly} \ \mathrm{produced} \ X \ \mathrm{only}) \end{array}$

systematics

Source	Relative uncertainty
Signal model	5%
Background model	data driven, see Sec. 4
Trigger, reconstruction, selection	2-5% (bin dependent)
Charged-particle multiplicity	5%
X kinematics	10-30% (bin dependent)
<i>b</i> -jet selection	11% (X + b only)
SV selection	5% (SV-based only)
X SV distribution	10% (SV-based only)
Luminosity	6%
Total	11-30% (bin dependent)

Results

No excess found and model independent UL on cross section

Prompt search to constraint 2HDM + complex scalar singlet (model from: <u>PRD 93, 055047 (2016)</u>)

• world-best upper limit on mixing angle with SM Higgs θ_H

Displaced results interpreted onto limits on **Hidden Valley** model with dark showers of light **hidden hadrons** (model from <u>PRD 97 (2018) 095033</u>)

- 90% CL UL on kinetic mixing between γ and Z_{HV}
- World-first constraints with minimal model dependence

Result depends on hidden hadron multiplicity (NHV ~10)

Displaced Backgrounds

1. B-hadron decay chains that produce two muons

[Require decay topology to be consistent with a 2-body long-lived particle decay that originated at a PV ; Rejected if selected by inclusive heavy-flavor software trigger + BDT classifiers]

2. $K_S^0 \rightarrow \pi^+ \pi^-$ tail

[This limits the mass range for the displaced search. Subtracted by extrapolation]

Photon conversions to μ+μ- in the silicon-strip vertex detector
 [Rejected by material veto tool]

Prompt normalization

Determine observed off-shell photon yield:

- 1. Estimate misID background by subtracting $\mu^{\pm} \mu^{\pm}$ yields
- 2. Estimate heavy flavor background by performing binned extended maximum likelihood fits to the min $[\chi^2 IP(\mu^{\pm})]$ distributions

 $\chi^2_{\rm IP}(\mu^{\pm})$: difference in the vertex-fit χ^2 when the PV is reconstructed with and without the muon

Systematics

3 control samples:

- $\mu\mu\gamma$: check selections @ low masses
- *e*µ: check selections @ high masses;
- *ee*: *γ*-veto studies;

Table of systematics:

Source	Low mass	Medium mass	High mass
selections	2.7%	6.5%	8.3%
Mass resolution	10%	10%	10%
Background shapes	3.2%	8.6%	25%
Photon veto	34%	5%	5%
luminosity	1%	1%	1%

Results

Results

Results

Invisible Z' with non negligible intrinsic width:

• $\Gamma_{Z'} = 0.1 M_{Z'}$, $0.15 M_{Z'}$

Dark Higgsstrahlung @ Belle II

Systematics

2 control samples:

- $\mu\mu\gamma$: largely dominated by $\mu\mu(\gamma)$ background;
- $e\mu$: largely dominated by $\tau\tau$ background;

Split mass plane into orthogonal macro-regions

- Each dominated by a single background source
- Data/MC normalization+ shape

Table of systematics:

source	uncertainty	target
Pre-selections	2 - 9.1%	BKG & signal
BKG shape	9.3% (region specific)	BKG
C_η cut	1%	BKG
Mass resolution	2.4% (on average)	signal
Eff. Inside windows	2 - 5%	signal
Theory (BR A')	4%	signal

Negligible effect on Uls (~1%) Exception is M_{A'} > 9 GeV/c² (~25%)

Dark Higgsstrahlung @ Belle II

Invisible dark photon @ Belle II

Results

Background suppression:

• Discriminant variables: E_{CMS} vs. polar angle of "single photon";

SM backgrounds:

ALPs @ Belle II

Results

Axion Like Particles (ALPs): pseudo-scalars particles (*a*) that couple to fermions or boson.

Phys. Rev. Lett. 125, 161806 (2020)

Search for ALP-strahlung in the 3γ resolved final state

• Used first data from 2018 commissioning run (0.455 fb⁻¹);

Signature:

- 3γ that add up to the beam energy;
- bump on di-photon mass;

Background:

• $\gamma\gamma(\gamma)$; $e^+e^-(\gamma)$; $P\gamma(\gamma)$ with $P = \pi^0, \eta, \eta'$;

No excess observed and 90% CL UL on $g_{a\gamma\gamma}$ down to $O(10^{-3})$.

First results ever for ALPs @ B-factories

ALPs @ Belle II

Results

EPS-HEP 2021 – Dark Matter Searches at Belle II, Belle, and BaBar (M. Campajola)

Models, searches and signatures

Model dependency:

- Most of the searches at Belle II and LHCb are performed for some "benchmark" models;
- However, recasting limits to account for different models (*e.g.*, A' vs. ALPs) is usually rather straight forward;

Searches strongly depends on signatures:

• Trigger and selections for low multiplicity final states are very sensitive to the presence or absence of additional particles;

Inelastic Dark Matter (iDM) @ Belle II

Prospects

 Expanded dark sector with two dark matter states with a small mass splitting and a dark photon

→ χ_2 is long-lived

• Focus on $M_{A'} > m_{\chi_1} + m_{\chi_2}$: the decay $A' \rightarrow \chi_1 \chi_2$ is favored

Inelastic Dark Matter (iDM) @ Belle II

Prospects

- Estimate signal yield by counting events in ISR photon energy window (final analysis will use a template fit)
- With early Belle II dataset expect to probe dark sector-Standard Model couplings down to 10⁻³ – 10⁻⁴
- New displaced vertex trigger under consideration

State of the art @ B-factories

A lot of DM searches @ B-factories excluded Dark Sector parameters down to:

	Belle	BaBar	Belle II
$ee ightarrow \gamma A', A' ightarrow ll$	-	$\epsilon < 5 \times 10^{-4} (514 \text{ fb}^{-1}) [1]$	-
$ee ightarrow \gamma A', A' ightarrow$ invisible	-	$\epsilon < 10^{-3} (53 \text{ fb}^{-1}) [2]$	-
$B^0 ightarrow A'A'$	$BF < 10^{-7} (711 \text{ fb}^{-1}) [3]$	-	-
$ee \rightarrow \gamma \Upsilon_D$ (DM bound state)	-	$\epsilon < 10^{-3} (514 \text{ fb}^{-1}) [*]$	-
ee ightarrow A'h',h' ightarrow A'A'	$\alpha_D \epsilon < 10^{-9} (977 \text{ fb}^{-1}) [4]$	$\alpha_D \epsilon < 10^{-9} (514 \text{ fb}^{-1}) [5]$	-
$ee ightarrow \mu \mu Z', Z' ightarrow ll$	$g' < 10^{-3} (643 \text{fb}^{-1}) [*]$	$g' < 10^{-3} (514 \text{ fb}^{-1}) [1]$	-
$ee ightarrow \mu \mu Z', Z' ightarrow$ invisible	-	-	$g' < 5 \times 10^{-2} (0.27 \text{ fb}^{-1}) [6]$
$\eta ightarrow \gamma A_{m{q}}^{\prime},A_{m{q}}^{\prime} ightarrow \pi\pi$	$\alpha_q < 5 \times 10^{-3} \ (976 \ { m fb}^{-1}) \ [7]$	-	
$ee ightarrow au au \phi_ au, \phi_ au ightarrow ll$	-	$\eta < 5 imes 10^{-1} (514 \ { m fb}^{-1}) [8]$	
$ee ightarrow \gamma a, a ightarrow \gamma \gamma$	-	-	$ g_{a\gamma\gamma} < 10^{-3} \mathrm{GeV^{-1}} \ (0.45 \mathrm{fb^{-1}}) \ [9]$
$B^{\pm} ightarrow K^{\pm}a, a ightarrow \gamma\gamma$	-	$g_{aWW} < 10^{-5} \mathrm{GeV^{-1}} \ (424 \mathrm{fb^{-1}}) \ [*]$	-
$\Upsilon(2S,3S) \to \gamma A^0, A^0 \to \mu \mu$	-	$(99,122 imes 10^6\Upsilon(2S,3S))[10]$	-
$\Upsilon(3S) o \gamma A^0, A^0 o au au$	-	${ m BF} < 10^{-5} (122 imes 10^6 \Upsilon(3{ m S})) \; [11]$	-
$\uparrow \Upsilon(2S) \to \Upsilon(1S)\pi\pi, \Upsilon(1S) \to \gamma A^0, A^0 \to \text{invisible}$	BF < $10^{-6}(157 \times 10^{6} \Upsilon(2S))$ [12]	${ m BF} < 10^{-6}(98 imes 10^6 \Upsilon(2{ m S})) \ [13]$	-
$\Upsilon(2S,3S) \to \pi\pi\Upsilon(1S), \Upsilon(1S) \to \gamma A^0, A^0 \to \mu\mu$	-	${ m BF} < 10^{-6}(93,117 imes10^{6}\Upsilon(2{ m S},3{ m S}))[14]$	-

State of the art @ LHCb

- Search for long-lived scalar particles in $B^+ \to K^+ \chi(\mu^+ \mu^-)$ decays arXiv:1612.07818 Submitted to PRL
- Search for massive long-lived particles decaying semileptonically in the LHCb detector arXiv:1612.00945 Submitted to EPJC
- Search for hidden-sector bosons in $B_d^0 \to K^* \mu^+ \mu^-$ decays Phys. Rev. Lett. 115, 161802 (2015)
- Search for Majorana neutrinos in $B^- \to \pi^+ \mu^- \mu^-$ decays Phys. Rev. Lett. 112, 131802 (2014)
- Search for long-lived particles decaying to jet pairs Eur. Phys. J. C75 (2015) 152
- Evidence for the rare decay $\Sigma^+ \rightarrow p \mu^+ \mu^-$ LHCb-CONF-2016-013
- Search for Higgs-like bosons decaying into long-lived exotic particles Eur. Phys. J. C (2016) 76: 664
- Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb Eur. Phys. J. C 75 (2015) 595
- Searches for Majorana neutrinos in B decays Phys. Rev. D 85, 112004 (2012)

Form F. Dettori