

Eldar Ganiev (**DESY**) on behalf of the Belle Collaboration

July 9, 2022 - ICHEP 2022, Bologna, Italy

BELLE || RESULTS ON **ELECTRO WEAK PENGUINS**

Electroweak and radiative penguins

 $b \rightarrow s$ transitions: flavor-changing neutral current not possible at tree level in the standard model (SM)

- Predictions for branching fractions ~10⁻⁷—10⁻⁴, with 5–30% uncertainties (dominated by soft QCD effects)
- Precise predictions for angular observables, asymmetries, and ratios

Highly sensitive to potential new physics (NP) contribution

- Mediators in loops or new tree level diagrams
- Sources of missing energy (e.g. $b \rightarrow s + DM$)
- Can modify rates, asymmetries, and angular distributions

=> Plenty of opportunities to probe the SM and explore the NP

Energy-asymmetric e^+e^- collisions at 10.58 GeV corresponding to the $\Upsilon(4S)$ -resonance mass

- $B\overline{B}$ at threshold production: <u>low background</u>
- Collide point-like particles and nearly 4π coverage: reconstruct final states with neutrinos or inclusively
- Flavor universal: similar performance for electrons and muons

Belle II in 2019-2022:

✓ world-record luminosity by SuperKEKB: 4.7×10³⁴ cm⁻²s⁻¹ ✓ collected 424 fb⁻¹ of data

In ow starting one year stop for vertex detector completion and improved beampipe

Today's results from 63 fb⁻¹ and 190 fb⁻¹

Belle II @ SuperKEKB

 K_L and μ detection $K_{\rm L}^0 p$ -resolution: 15 MeV μ identification efficiency: ~90%

EM Calorimeter

Energy resolution: 4%-1.6%

Vertex Detector Vertex resolution: $15 \,\mu m$

electrons (7 GeV)

Central Drift Chamber Spatial resolution: 100 μ m dE/dx resolution: 5% p_T resolution: 0.4%

Particle identification K eff. 90%, fake π rate 5%

~ 7.5 m

~ 7 m

Reconstruction techniques

A typical $B\overline{B}$ event generates ~10 tracks and ~10 photons Challenge: measurements of inclusive decays or decays including neutrinos suffer from missing kinematic info For example, $B \rightarrow K^{(*)} \sqrt{\nu}$, fully-inclusive $B \rightarrow X_s \gamma$

- •Information from partner B (tag) provides insight about signal B
- •Methods specific to *B*-factory experiments

Purities of the tagged samples, available physics observables Tagging efficiencies, achievable yields

4

BONONIA DOCET MATER STVDIORVM SENATVI BONONIENSI ILLUSTRISSIMO TABVLAM HANC quam potest officiofe D. D. D. D.

agent there

Electroweak penguins and friends

 $B \to K^* \ell \ell$ 2. $B \to J/\psi K$

YOU ARE HERE

THE OWNER WATCHING THE OWNER WATCHING

And in Column 2 is not

Radiative decays district

4. $B \rightarrow X_{s} \gamma$

I. BLAEV.

neighbourhood

3. $B \rightarrow K \nu \bar{\nu}$

202 12 2

Charles and the state of the state

Electroweak penguins and friends neighbourhood

Belle II can provide independent check of $R(K^{(*)})$ anomalies with few ab⁻¹

Belle II search for $B \rightarrow K^*(892)l^+l^ (l = e, \mu)$ with 189 fb⁻¹

<u>Challenge</u>: limited by sample size

- Reconstruct $K^* \rightarrow K^+ \pi^-$, $K^+ \pi^0$, $K^0 \otimes \pi^+ + 2$ same-flavor leptons
- Background suppression: charm veto (e.g $J/\psi \rightarrow ll$), BDT to suppress candidates from $e^+e^- \rightarrow q\overline{q}$ and other $e^+e^- \rightarrow BB$
- Signal yield extracted from the fit of $M_{\rm bc} = \sqrt{E_{\rm beam}^2 p}$

Decay	Belle II (10^{-6})	PDG (
$B \rightarrow K^* e^+ e^-$	$1.42 \pm 0.48 \pm 0.09$	$1.19 \pm$
$B \to K^* \mu^+ \mu^-$	$1.19\pm0.31^{+0.08}_{-0.07}$	$1.06 \pm$

Precision for e and μ channels in same ballpark, ~25-30%

arXiv:2206.05946

Preparing for $R(K^{(*)})$ (I)

GeV/c²

Entries / [0.0033

GeV/c^z

Entries / [0.0033

$$p_B^{*2}$$
 and $\Delta E = E_B^* - E_{\text{beam}}$
 $10^{-6})$
 0.20
 0.09

Preparing for $R(K^{(*)})$

Belle II measurement of $B \rightarrow J/\psi K$ decays with 189 fb⁻¹ Not an EW penguin process but a control channel for $B \rightarrow Kl^+l^-$

=> Validate R_K measurement, lepton identification

- Reconstruct $B^+ \rightarrow K^+ J/\psi$ and $B^0 \rightarrow K^0_S J/\psi$ decays
- Signal yield extracted from the fit of $M_{\rm bc}$ and ΔE

$$R_{K}(J/\psi) = \frac{\mathscr{B}(B \to KJ/\psi(\to \mu^{+}\mu^{-}))}{\mathscr{B}(B \to KJ/\psi(\to e^{+}e^{-}))}$$

Observable	Belle II	Belle
$R_{K^+}(J/\psi)$	$1.009 \pm 0.022 \pm 0.008$	$0.994 \pm 0.$
$R_{K^0_{ m S}}(J/\psi)$	$1.042 \pm 0.042 \pm 0.008$	$0.993 \pm 0.$

Lepton identification systematic uncertainty improved wrt Belle

$$(J/\psi \rightarrow e^+e^-, \ \mu^+\mu^-)$$

Search for $B^+ \to K^+ \nu \bar{\nu} (I)$

SM probe complementary to explain $b \rightarrow sll$ anomalies (e.g <u>PRD98.05503</u>, <u>PRD102.015023</u>)

Reliable prediction (no amplitudes with virtual photon) $\mathsf{BF}_{\mathsf{SM}}(B^+ \to K^+ \nu \overline{\nu}) = (4.6 \pm 0.5) \times 10^{-6} \text{ [arxiv:1606.00916]}$

=> Unique to Belle II

<u>Challenge</u>: two neutrinos in the final state and limited sample size Use inclusive approach to search for $B^+ \rightarrow K^+ v \overline{v}$ in 63 fb⁻¹

Signal kaon = candidate - track with the highest p_T

- Associate all remaining tracks and clusters to other *B* in the event
- Use 2 consequent BDTs based on kinematics, event-topology, tagged B, and vertexing variables, to suppress background

Search for $B^+ \to K^+ \nu \bar{\nu} (II)$

Signal from maximum likelihood fit in bins of $p_T(K^+)$ and BDT output

- Branching fraction $BF(B^+ \rightarrow K^+ \nu \overline{\nu}) = (1.9^{+1.6}_{-1.5}) \times 10^{-5}$
- Corresponding upper limit @ 90% CL BF($B^+ \rightarrow K^+ \sqrt{\nu}$)

Signal strength comparable with the SM at 1σ and with background only hypothesis at 1.3σ

Inclusive method offers 20% - 350% sensitivity improvement over previous approaches

PRL 127, 181802

$$(5)$$
 $< 4.1 \times 10^{-5}$

Radiative decays district

 $b \rightarrow s\gamma$ has higher rates and is sensitive differently to NP wrt $b \rightarrow sll$ Inclusive

> Experimental challenge Theory challenge

Study of inclusive $B \rightarrow X_{s} \gamma$ decay. In addition to NP searches extract:

- some SM parameters, e.g. mass of *b*-quark [RevModPhys88.035008]
- shape function describing the motion of *b*-quark inside $B_{[PRL127.102001]}$

<u>Today</u>: BF($B \rightarrow X_s \gamma$) and photon spectrum with hadronic tag in 189 fb⁻¹

<u>Challenge</u>: suppress and subtract background contributions

- Reconstruct tag side using multitude of hadronic channels
- Reconstruct signal photon candidate with highest E_{ν}^{B} $(E_{\nu}^{B} > 1.4 \text{ GeV})$
- Veto photons coming from π^0 and η decays

Inclusive $BF(B \rightarrow X_{c}\gamma)$ (II)

- Suppress $e^+e^- \rightarrow q\overline{q}$ background by combining event-topology, B_{tag} kinematics, and vertexing variables in a BDT.
- Determine number of well-reconstructed B_{tag} mesons in data and simulation^{*} by fitting the M_{bc} distribution in bins of E_{ν}^{B} . $*B \rightarrow X_{s}\gamma$ is excluded from simulation
- From E^B_{ν} distributions obtained in data subtract those in simulation => Obtain number of $B \rightarrow X_s \gamma$ decays.
- Calculate partial branching fractions in bins of E_{ν}^{B}

 $\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_{\gamma}} = \frac{\mathcal{U}_i \cdot (N_i^{\text{DATA}} - N_i^{\text{BKG, MC}} - N_i^{B \to X_d \gamma})}{\varsigma \dots N_{-}}$ $N_i^{\text{DATA}} (N_i^{\text{BKG,MC}})$ - number of events in data (simulation) $N_i^{B \to X_d \gamma}$ - number of $B \to X_d \gamma$ events \mathcal{U}_i - unfolding factor N_{R} - number of $B\overline{B}$ pairs ε_i - signal efficiency

Inclusive $BF(B \rightarrow X_{c}\gamma)$ (III)

• Integrate results for various E_{ν}^{B} thresholds

E_{γ}^{B} threshold,	GeV	$\mathcal{B}(B \to X_s \gamma)(10^{-4})$
1.8		3.54 ± 0.78 (stat.) ± 0.83 (stat.)
2.0		$3.06 \pm 0.56 \text{ (stat.) } \pm 0.47 \text{ (stat.)}$

- Largest systematic effects due to simulation mismodelings and bkg normalization data-simulation discrepancy.
- BaBar hadron tag result for $E_{\gamma}^{B} > 1.9$ GeV (210 fb⁻¹): $(3.66 \pm 0.85 \pm 0.60) \times 10^{-4}$ [PRD77.051103]
- SM prediction for $E_{\gamma}^{B} > 1.6$ GeV: $(3.40 \pm 0.17) \times 10^{-4}$ [JHEPO6(2020)175]

Competitive with the BaBar hadronic tag measurement

Summary

- $b \rightarrow s$ transitions offer powerful probe of the SM and physics beyond
- $b \rightarrow s$ studies are essential portion of the Belle II physics program unique access to radiative and missing energy modes
- Measurements with 63 fb⁻¹ and 190 fb⁻¹ presented: \triangleright $B \rightarrow K^* ll$ branching fraction;
- Branching fraction, isospin asymmetry, and $R_K(J/\psi)$ of $B \rightarrow J/\psi K$ decays; NEW! 🖻
 - $B \rightarrow K v \overline{v}$ branching fraction;
 - \triangleright $B \rightarrow K^* \gamma$ branching fraction;
- **NEW!** Partial branching fractions of $B \rightarrow X_s \gamma$ decay with hadronic tag approach.

Belle II is on track to carry out independent and/or unique searches of NP indications in EW and Rad penguins

Backup

 $B \to K^* \mu^+ \mu^-$

 $B \rightarrow K^* e^+ e^-$

arXiv:2206.05946

Measurement of BF($B \rightarrow K^* \ell \ell)$

arXiv:2206.05946

$B \to K^* \ell^+ \ell^-$

Measurement of $B \rightarrow J/\psi K$ decays

Decay

$$B^+ \to K^+ J/\psi(\to e^+)$$

 $B^+ \to K^+ J/\psi(\to \mu^+)$
 $B^0 \to K^0_S J/\psi(\to e^+ e^-)$
 $B^0 \to K^0_S J/\psi(\to \mu^+)$

$$R_K(J/\psi) = \frac{\mathscr{B}}{\mathscr{B}}$$

Observable	Belle II	Belle (2021)
$R_{K^+}(J/\psi)$	$1.009 \pm 0.022 \pm 0.008$	$0.994 \pm 0.011 \pm 0.010$
$R_{K^0_{ m S}}(J/\psi)$	$1.042 \pm 0.042 \pm 0.008$	$0.993 \pm 0.015 \pm 0.010$

$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}})(f^{\pm}/f^{00})(n_{sig}/\epsilon)|_{K_{S}^{0}J/\psi(\ell\ell)} - (n_{sig}/\epsilon)|_{K^{+}J/\psi(\ell\ell)}}{(\tau_{B^{+}}/\tau_{B^{0}})(f^{\pm}/f^{00})(n_{sig}/\epsilon)|_{K_{S}^{0}J/\psi(\ell\ell)} + (n_{sig}/\epsilon)|_{K^{+}J/\psi(\ell\ell)}}$$

Observable	Belle II	Belle (2021)
$A_I(J/\psi \to e^+e^-)$	$-0.022\pm 0.016\pm 0.030$	$-0.002 \pm 0.007 \pm 0.024$
$A_I(J/\psi \to \mu^+\mu^-)$	$-0.006 \pm 0.015 \pm 0.030$	$-0.002 \pm 0.007 \pm 0.024$

Branching fraction

	Belle II (10^{-5})	PDG (10^{-5})
e_)	$6.00 \pm 0.10 \pm 0.19$	6.09 ± 0.12
$\mu^{-})$	$6.06 \pm 0.09 \pm 0.19$	6.08 ± 0.12
-)	$2.67 \pm 0.08 \pm 0.12$	2.66 ± 0.10
(_)	$2.78 \pm 0.08 \pm 0.12$	2.65 ± 0.10

$$(B \to KJ/\psi (\to \mu^+ \mu^-)))$$

$$(B \rightarrow KJ/\psi(\rightarrow e^+e^-))$$

Measurement of $B \rightarrow J/\psi K$ decays

20

Measurement of $B \rightarrow J/\psi K$ decays

21

TABLE I: Partial branching fraction measurement results and uncertainties. Note that signal efficiency and background modelling uncertainties are correlated (see Sections 7.2 and (7.3).

$E_{\gamma}^B \; [{ m GeV} \;]$	$\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_\gamma} (10^{-4})$	Statistical	Systematic	Fit procedure	Signal efficiency	Background modelling	Other
1.8 - 2.0	0.48	0.54	0.64	0.42	0.03	0.49	0.09
2.0 - 2.1	0.57	0.31	0.25	0.17	0.06	0.17	0.07
2.1 - 2.2	0.13	0.26	0.16	0.13	0.01	0.11	0.01
2.2 - 2.3	0.41	0.22	0.10	0.07	0.05	0.04	0.02
2.3 - 2.4	0.48	0.22	0.10	0.06	0.06	0.02	0.05
2.4 - 2.5	0.75	0.19	0.14	0.04	0.09	0.02	0.09
2.5 - 2.6	0.71	0.13	0.10	0.02	0.09	0.00	0.04

Inclusive $BF(B \rightarrow X_{\varsigma}\gamma)$

