Searches for dark Higgsstrahlung and invisible Z' at the Belle II experiment

Huw Haigh, on behalf of the Belle II Collaboration

33rd Rencontres de Blois - Dark Universe(s)

huw.haigh@oeaw.ac.at

25th May 2022

Established by the European Commission

Introduction

B-factories have a unique reach in searches for the light mediator mass m_M dark sector with low mass mediator particles on the off-shell MeV-GeV scale. invisible Talk by Laura Zani visible Belle II has great advantages in dark sector searches Hermetic detector 2m \bigcirc long-lived Clean collision environment \bigcirc Excellent PID dark matter mass mom 0 Key: Dedicated low-multiplicity triggers Theories 0 WIMPs This talk focuses on two searches: Hidden / dark sector Black **Dark Photon** that obtains mass through spontaneous • holes symmetry breaking, introducing a Dark Higgs Boson. Higgs **QCD** Axion **Z' boson** that couples to 2nd and 3rd lepton generations and decays invisibly 30M me\ eV keV MeV GeV TeV

Mass scale

Belle II & SuperKEKB

- **B-factory** located in Tsukuba, Japan.
- Asymmetric e⁺e⁻ collider operating at m_{Y(4S)} = 10.58 GeV/c² (7
 GeV/c² e⁻ + 4 GeV/c² e⁺)
- Pilot run in 2018, physics runs began March 2019
- Target x50 Belle data (≈50ab⁻¹)
- Wide-ranging and varied physics program: B and D physics, quarkonium, T-physics, dark sector, ...

- Increased beam backgrounds
 - → upgraded trigger system with dedicated low multiplicity lines

- B_v = 0.28 (vs 0.42 @ Belle)
 - Reduced boost requiring improved vertex reconstruction
- Solid angle coverage > 90%
 - → High hermeticity for E_{miss} measurements.

Belle II & SuperKEKB

Trigger System

- Two-tier trigger system:
 - Hardware based low level trigger (L1)
 - Software based high level trigger (HLT)
- Reduce effects from beam backgrounds (Touschek effect, beam-gas scattering, radiative Bhabha, ...)
- L1 trigger
 - Max trigger rate 30KHz
 - Combines 4 sub-detector triggers; Drift Chamber, Cherenkov detectors, Muon System, Electromagnetic Calorimeter
- Dedicated trigger lines for dark sector and low-multiplicity physics (not available in Belle):
 - Single photon / track
 - Multi-track triggers
 - 2 full tracks with opening angle requirement used in dark higgsstrahlung/Z' searches
 - 3D neural trigger

Dark Higgsstrahlung - Theory

Next to minimal dark photon model

 Dark photon, mass generated via spontaneous symmetry breaking of U(1)' extension to SM, introduces dark Higgs boson.

(Phys. Rev. D 79, 115008 (2009))

- Single dark photon, A', and a single dark Higgs, h'
- Dark photon coupled to SM photon via kinetic mixing parameter ε

Mass hierarchy scenarios

- $\mathbf{M}_{\mathbf{h}'} > \mathbf{M}_{\mathbf{A}'} : \mathbf{h}' \to \mathbf{A}' \to 4\mathbf{I}, 4\mathbf{had}, 2\mathbf{I}+2\mathbf{had} \Rightarrow 6$ charged tracks
 - Searches conducted by **BaBar (2012)** and **Belle (2015)**
- $\mathbf{M}_{h'} < \mathbf{M}_{a'}$: h' is long-lived and so invisible \Rightarrow 2 charged tracks
 - Partially constrained by KLOE (2015)

Dark Higgsstrahlung - Theory

Next to minimal dark photon model

- Dark photon, mass generated via spontaneous symmetry breaking of U(1)' extension to SM, introduces dark Higgs boson.
 (Phys. Rev. D 79, 115008 (2009))
- Single dark photon, A', and a single dark Higgs, h'
- Dark photon coupled to SM photon via kinetic mixing parameter ε

Mass hierarchy scenarios

- $\mathbf{M}_{h'} > \mathbf{M}_{A'} : h' \to A' \to 4l$, 4had, 2l+2had \Rightarrow 6 charged tracks
 - Searches conducted by **BaBar (2012)** and **Belle (2015)**
- $\mathbf{M}_{\mathbf{h}'} < \mathbf{M}_{\mathbf{a}}$: h' is long-lived and so invisible \Rightarrow 2 charged tracks
 - Partially constrained by <u>KLOE (2015)</u>

Exploring unconstrained region at Belle II

Data sample: 2019 dataset \Rightarrow 8.34fb⁻¹

Detector signature:

- Looking for invisible h' with A' $\rightarrow \mu^+\mu^- \Rightarrow \mu^+\mu^-$ + missing energy.
- 2D peak in $M_{\mu\mu}$ vs M_{rec} (M $_{rec}$ invariant mass of system recoiling from $\mu^+\mu^{-}$)

- $M_{\mu\mu} \& M_{rec}$ correlated \Rightarrow search in tilted elliptical mass windows.
- Spacing $\propto M^2$ 2D resolution.
- ≈9000 overlapping windows (large look-elsewhere effect).
- Counting experiment in each window (on average, 1 event in ≈3 windows).

A'

h'

Dark Higgsstrahlung - Background suppression

Trigger & pre-selections:

- Events fire two-track, ffo trigger
- 2 good quality tracks
- MuonID, $P_{T}^{\mu\mu} > 0.1 \text{GeV/c}^{2}$
- Recoil pointing in ECL barrel, no nearby photon
- Event extra energy < 0.4 GeV/c²

Helicity angle (C_n):

- Cut on angle between flight direction of A' in CMS and μ⁻ in the A' rest frame (Punzi FOM optimised in each search window)
- Signal eff. 10-25% for $M_{\mu\mu} > 4 \text{ GeV/c}^2$ (rapidly drops below due to trigger)

A'

μ

h

Dark Higgsstrahlung - Systematics

Data validation in control samples:

- $\mu^{+}\mu^{-}\gamma$: require energetic photon (usually vetoed)
- $T^{+}T^{-} \rightarrow e\mu$, 4v: require electron instead of muon
- Split 2D mass plane into orthogonal macro-regions
 - Each enriched by a single source of background
 - Data vs MC: normalisation, background shape modelling, recoil mass resolution.
 - Overall good agreement observed.
 - Discrepancies assigned as systematic uncertainties.

source	uncertainty	target
Pre-selections	2-9.1%	BKG & signal
BKG shape	9.3% (region specific)	BKG
C_η cut	1%	BKG
Mass resolution	2.4% (on average)	signal
Eff. Inside windows	2 - 5%	signal
Theory (BR A')	4%	signal

- Uncertainties in majority of search plane are dominated by sample size (impact of systematics on ULs < 1%, see next slide)
- Exception is $M_{A'} > 9 \text{GeV/c}^2$ ($\approx 25\%$ impact on ULs)

Dark Higgsstrahlung - Results

Search for excesses above expected background independently in the ≈9000 search windows.

• Event counts in a single window interpreted as: $N = \epsilon_{sig} x L x \sigma_{DH} + B$ with systematic uncertainties taken into account.

Find no significant excess above background.
 90% upper limits computed in a Bayesian approach on the cross section from 1.65 to 10.51 GeV/c² in M_{A'} (M_{h'} < M_{A'})

World leading ULs for $1.65 < M_{A'} < 10.51 \text{ GeV/c}^2$

Dark Higgsstrahlung - Results

Search for excesses above expected background independently in the ≈9000 search windows.

Invisible Z' - Theory

- U(1)' extension of standard model -> new massive gauge boson
- Couples to μ and T leptons $(L_{\mu}-L_{T})$ via g'
- Decay to DM or neutrinos -> neither of which detectable.
- possibilities;
 - ο (g-2)_μ
 - $\circ \quad B \longrightarrow s \mu \mu$
 - Mediator between SM and DS

$$\mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \mathcal{L}$$

$$M_{Z'} < 2M_{\tau} \implies BF[Z' \rightarrow \text{invisible}] \simeq 1/2,$$

$$M_{Z'} > 2M_{\tau} \implies BF[Z' \rightarrow \text{invisible}] \simeq 1/3.$$

$$\text{if } M_{Z'} > 2M_{\chi}$$

$$BF(Z' \rightarrow \chi \bar{\chi}) = 1$$

$$\mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell$$

Invisible Z' - Analysis

Data sample: 2018 dataset \Rightarrow 276pb⁻¹

Detector signature:

- Looking for $e^+e^- \rightarrow \mu^+\mu^- Z' \Rightarrow$ signature $\mu^+\mu^- +$ recoil.
- Peak in the squared recoil mass distribution (M_{rec} invariant mass of system recoiling from $\mu^+\mu^-$)

Search strategy:

- Search for peak in. M_{recoil} distribution.
- Background suppression by 2D cuts to kinematic variables.

Background Rejection:

- T suppression reduces $e^+e^- \rightarrow T^+T^-(\gamma)$, T $\rightarrow \mu$, T
- Cut applied to 2D $p_{rec}^{t, lmin}$ vs $p_{rec}^{t, lmax}$ distribution + $p_{uu}^{t} > p_{cut}^{t}$
- Selected to maximise FOM in recoil mass search windows

Invisible Z' - Result

Data sample: 2018 dataset \Rightarrow 276pb⁻¹

Detector signature:

- Looking for $e^+e^- \rightarrow \mu^+\mu^- Z' \Rightarrow$ signature $\mu^+\mu^- +$ recoil.
- Peak in the squared recoil mass distribution (M_{rec} invariant mass of system recoiling from $\mu^+\mu^-$)

Search strategy:

- Search for peak in. M_{recoil} distribution.
- Background suppression by 2D cuts to kinematic variables.

Invisible Z' - Update

Trigger & pre-selections:

Punzi-net:

- Events fire two-track, ffo (later ff30) trigger
- 2 good quality tracks
- MuonID, $P_{T}^{\mu\mu} > 0.1 \text{GeV/c}^{2}$
- Recoil pointing in ECL barrel, no nearby photon
- Event extra energy < 0.5 GeV/c²
- 3D opening angle < 179.5°
- M_{recoil} < 9 GeV

Surviving Backgrounds:

- Main contributions
 - $\circ \qquad T^{+}T^{-} \rightarrow \mu^{+}\mu^{-}, \, 4\nu$
 - $\circ \quad e^+e^-\mu^+\mu^-$
 - μ⁺μ⁻(γ)
- Mostly localised in higher recoil mass (M²_{rec} > 45 GeV²/c⁴)

• NN trained with novel 'Punzi-loss' - designed to optimise for Punzi FOM

$$\sigma_{\min}(t) = \frac{\frac{b^2}{2} + a\sqrt{B(t)} + \frac{b}{2}\sqrt{b^2 + 4a\sqrt{B(t)} + 4B(t)}}{\varepsilon(t) \cdot L}$$
Signal
Eff.
$$s_{i}(t) \rightarrow \varepsilon(w, b) = \sum_{x} \frac{y_i \cdot \hat{y}_i(w, b) \cdot s_{sig}}{N_{gen}} \text{ and}$$

$$B(t) \rightarrow B(w, b) = \sum_{x} (1 - y_i) \cdot \hat{y}_i(w, b) \cdot s_{bkg}^i$$

Eur. Phys. J. C 82 (2022) 121

• Single cut to output of Punzi-net provides optimum FOM across search space.

Update expected soon!

Invisible Z' - Update

Conclusion

• Belle II has collected 384fb^{-1} thus far -> will collect $\approx 50 \text{ab}^{-1}$ in the next decade.

- Advantages in dark sector searches;
 - Hermetic detector
 - Clean collision environment
 - Excellent PID
 - Dedicated low-multiplicity triggers

• Dark Higgsstrahlung search

- Search for invisible h' with A' → $\mu^+\mu^-$ ⇒ $\mu^+\mu^-$ + missing energy. ⇒ 2D peak in M_{µµ} vs M_{rec}
- $\circ~$ No significant excess above bkg, 90% upper limits computed for 1.65 10.51 GeV/ in M_{\rm A'}~(M_{\rm h'} < M_{\rm A'})
- World leading ULs for 1.65 < $M_{A'}$ < 10.51 GeV/c²

• Z' to invisible search

- First Belle II physics paper with 276pb⁻¹ world leading result.
- Update with much more data, inclusive trigger, optimised selection on the way very soon ⇒ will probe g' coupling associated with muon g-2

