Unanswered Questions in Charmed Baryon Physics

John Yelton University of Florida

Many conferences include:

- 1. Carefully justified experimental measurements, some of which are not explained by theorists
- 2. Theorists with models which cannot be tested experimentally

Sometimes there is a lack of overlap

I am experimentalist who will show some (public) data, but will ask questions which I have been interested in for many years, but no-one has answered to my satisfaction.

(Note I am representing only myself and not any experiment)

1. The $\Lambda_c^+\pi^+\pi^-$ spectrum shows lots of structure

 $Λ_{c}^{+}(2880)$ is measured to be J^P=5/2⁺ and to decay to $Σ_{c}(2455)π$ and a little to $Σ_{c}(2520)π$

But why doesn't it decay predominantly to $\Sigma_{c}(2520)\pi$?

 $\Lambda_{c}^{+}(2593)$

Discovered in 1995 and immediately identified as the $J^P=1/2^-$ orbital excitation with one unit of angular momentum between the heavy quark and the light di-quark

Based on this model of the $\Lambda_c^+(2593)$, the approximate masses of 6 states were predicted, and subsequently these states have been found.

I also note that the production cross-section of the particles within the doublets are similar, which is what we would expect.

However, recent models tells me that my naïve picture is wrong and the $\Lambda_c^+(2593)$ is a "molecular state" or a "dynamically generated resonance". If this is the case:

How come the previous model predicted 6 particles correctly?

How can I tell the difference between a heavyquark light-diquark and some other model?

Let's look at isospin splitting in the Ξ_c system csu and csd

Particle	M(Ξ _c ⁺)-M(Ξ _c ⁰) MeV/c ²	
Ξ _c	-3.3 ± 0.4	
Ξ _c (2645)	-0.9 ± 0.5	
Ξ _c (2815)	$-3.5 \pm 0.1 \pm 0.5$	
Ξ _c (2980)	-4.8 ± 0.5	
$\Xi_{\rm c}^{\prime}$	-0.8 ± 0.5	
Ξ _c (2790)	-3.3 ± 0.6	

There seem to be two sets. In red, the isospin splitting is around -3.5 MeV/c², but in the blue it is much less The red states all have the two light quarks in a spin 0 configuration, whereas the blue states it is spin-1. Is this a rule that can be extended to other excited states? The $\Omega_{\rm c}$ (css) lifetime saga demonstrated how little we know about the $\Omega_{\rm c}$ decays

 * (In order to measure the $arOmega_{c}$ lifetime you need first convince people you have seen the $arOmega_{c}$)

If simple spectator diagram dominated the decays, the weakly-decaying charmed hadrons would all have similar branching ratios to (1, 2 and 3 pions) + stable particle.

Ω _c PDG	∧ _c + PDG	Ξ _c ⁰ PDG	Ξ _c + pdg
Ω⁻π⁺π⁰/Ω⁻π⁺	Λπ ⁺ π ⁰ /Λπ ⁺	Ξ ⁻ π ⁺ π ⁰ /Ξ ⁻ π ⁺	Ξ ⁰ π ⁺ π ⁰ /Ξ ⁰ π ⁺
1.97±0.17	5.46±0.42	Not Measured	4.2±1.5
Ω ⁻ π ⁺ π ⁻ π ⁺ /Ω ⁻ π ⁺	Λπ⁺π⁻π⁺/Λπ⁺	Ξ ⁻ π ⁺ π ⁻ π ⁺ /Ξ ⁻ π ⁺	Ξ ⁰ π ⁺ π ⁻ π ⁺ /Ξ ⁰ π ⁺
0.29±0.04	2.84±0.34	3.3±0.5	3.1±1.0
1			

Why is this ratio so low?

One subject which has TOO MANY answers, is what are the excited Ω_c 5 (or 6) particles?

5 narrow peaks, one possible wide one

Explanations need to take into account the production cross-section as well as the mass, width and decay properties

What is the $\Sigma_{\rm c}$ (2800)?

BaBar in B decay

 $\Delta M = 560 \pm 8 \pm 10 \text{ MeV/c}^2$

Γ = (86⁺³³₋₂₂) MeV

What is this peak? If you think it is an orbitally excited Σ_c , then why is there only one peak in each? HQET predicts that three of the states decay to $\Lambda_c \pi$, the other two to $\Sigma_c \pi$, where are they?

My unanswered questions

Why does the $\Lambda_{c}^{+}(2880)$ not decay "quickly" to $\Sigma_{c}(2520)\pi$?

If the $\Lambda_c^+(2593)$ is not an L = 1 heavy-quark/light diquark combination, how come that model has successfully predicted the mass and properties of 6 similar states? What experimental data would differentiate between the models?

Why does the Ω_c^0 decay to $\Omega^- \pi^+$ rather than $\Omega^- \pi^+ \pi^- \pi^+$?

We still don't know what the Ω_c^{*0} spectrum means, but how do we take into account the production cross-sections?

If the $\Sigma_c(2800)$ is an L=1 Σ_c , where are the others? The first orbital excitations should be a quintuplet of states