

Recent dark sector results from accelerator experiments ~Belle II and LHCb~

Akimasa Ishikawa (KEK)

FPCP2022 @University of Mississippi

Dark Matter

- Existence of dark matter (DM) had been established in astrophysics.
 - Rotation curve of a disk galaxy
 - Spatial distributions of luminous baryonic matter (with X-ray) and total matter (with gravitational lens) in a collision of galaxy clusters
 - And more
- We know the DM density in the Universe
 - $\Omega h^2 = 0.1188 \pm 0.0010$
 - 27% of total energy
- However there is no DM candidate in the SM
- Search for DM is a central issue in elementary particle physics

WIMP Miracle and...

- Assuming the thermal relic, WIMP with mass around O(100) GeV can explain the relic density.
- WIMP miracle !!

$$\Omega h^2 \simeq 0.1 \left(\frac{\langle \sigma v \rangle}{10^{-26} \text{ cm}^3/\text{s}} \right)^{-1}$$
$$10^{-26} \text{ cm}^3/\text{s} \simeq 10^{-9} \text{ GeV}^{-2} \sim \frac{g_2^4}{4\pi m_{\text{DM}}^2}$$

- However, WIMP has not been observed yet at the energy frontier collider, direct and indirect experiments.
- So wide variety of DM scenarios got attention recently.
- Dark sector (DS) is one of the important scenarios.

Dark Sector Models

- Particles in the dark sector are SM gauge singlet
- Dark sector and SM sector weakly couple with mediators (portal particles)
- (At least)four types of mediators
 - Scalar portal
 - Dark Higgs h'
 - Pseudo scalar portal
 - Axion like particles (ALPs) a
 - Vector portal
 - Dark photon A', Z' in L_{μ} - L_{τ} model
 - Fermion portal
 - Sterile neutrinos v_H
 - (Tensor portal??)
- The mediators could have mass around MeV-GeV
- Parameter space which can explain thermal relic
 - heavy sterile neutrinos could also explain leptogenesis

sources

SuperKEK and Belle II

- Belle II@SuperKEKB is a good playground to search for these mediators and DM around MeV-GeV scale
 - E_{CM}~10GeV
 - Highest luminosity in the world 4.1x10³⁴ /cm²/s
 - 4π x 94% detector → 4momentum conservation usable
 - Dark sector searches with heavy flavor b, τ and c decays
 - Single photon/track trigger enable us to search for dark sector with missing energy

LHC and LHCb

- LHCb@LHC is also good for dark sector searches with final states having muons and long lived particles.
 - Forward experiments with long liver arm
 - Good performance on trigger for muons
 - Mediator mass >10GeV is also accessible

Dark Photon A'

- Extra U(1) gauge boson
- Kinetic mixing ε with photon

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu}$$

- Two parameters
 - $\ m_{\text{A}'} \text{ and } \epsilon$
- Produced from meson decays or Drell-Yan
- decays to charged particles via kinetic mixing
 - $A' \rightarrow \mu \mu$ is searched
- Trigger on dimuon
- If kinetic mixing is very small and decaying into dark matter is suppressed, A' is long lived
 - long lived using vertex detector also searched (d<20cm)

Dark Photon A' $\rightarrow \mu\mu$

Limit on Kinetic Mixing

- Best limits on kinetic mixing for
 - $217 < m_{A'} < 740 MeV$
 - $-10.6 < m_{A'} < 30 \text{ GeV}$
 - $214 < m_{A'} < 740 MeV$ for long lived

Inclusive Dimuon Resonance X Search

- Similar search as A' but with minimum assumption
- Data
 - − 5.1fb⁻¹
- No significant excess observed

Interpretation of X Boson

- Interpretation of prompt search
 - hidden valley scalar particle mixing ($\theta_{\rm H}$) with Higgs in 2HDM
- World's leading limits given

Search for Long Lived Particles (LLP)

- Inspired by SUGRA with R-parity violation
- Production and search region
 - Decay from Higgs like particle via gluon fusion
 - 30 < m_h <200GeV
 - $10 < m_{\chi} < m_{h}/2 \text{ GeV}$
 - Non resonant contact interaction
 - 10 < m_χ < 90 GeV
- Decay
 - One muon + two jets $\tilde{\chi}_1^0 \rightarrow \mu^+ q_i q_j (\mu^- \bar{q}_i \bar{q}_j)$
- Data
 - 5.4fb⁻¹

Limit on σ^*BF

- Selection
 - High pT muon
 - displacement from primary vertex required.
 - At least three tracks attached to muon
 - Vertex fit quality cut.
- Using long lever arm, LLP with lifetime of 200ps can be searched

Dark Higgs

- Dark photon A' may acquire mass from the spontaneous symmetry breaking of dark Higgs field → physical dark Higgs h' emerges.
 - No mixing with SM Higgs is assumed in the analysis
- Dark Higgs can be generated from dark higgsstrahlung process : e⁺e⁻ → A'h'
- 4 parameters
 - M_{A'}, M_{h'}
 - ε: kinetic mixing
 - α_{D} : coupling constant of dark sector
- - Dark Higgs is visible
 - already covered by Belle and Babar
- - Dark Higgs is invisible
 - Only done by KLOE.
 - There is a wide room for search

Search for Dark Higgs in $e^+e^- \rightarrow A'h'$

- Data
 - 8.34fb⁻¹ in 2019
- Dark photon decay
 - A'**→**μμ
 - $M_{\mu\mu}$ >1.65GeV for trigger limitation
- Dark Higgs
 - invisible
 - Recoil mass against dimuon system
- Trigger on dimuon
 - two track with opening angle $\Delta \phi$ >90deg
 - 90% efficiency
- Search in two dimensional plain
 - M_{µµ} VS M_{rec}
 - Correlated
 - Ellipse signal windows
- Dominant backgrounds
 - e⁺e⁻→μµγ
 - e⁺e⁻→ττ
 - e⁺e⁻→eeµµ

P_{reliminary}

Limits on $\sigma(e^+e^- \rightarrow A'h')$

- No significant signal is observed
- Counting method to set the cross section limits in each bin
 - − $\sigma(e^+e^- \rightarrow A'h') < 10$ fb for wide region
- World's leading limit for $1.65 < M_{A'} < 10.51 GeV$

A'

h'

 $\sigma \propto \epsilon^2$

Limits on Physics Parameters

- 4 parameters : $M_{A'}$, $M_{h'}$, ϵ and α_{D}
- Limit on $\epsilon^2 \alpha_D$
 - Kinetic mixing ϵ and coupling constant α_{D} cannot be separately constrainted in this process.
- First limits in this mass region

Invisible Z' in L_{μ} - L_{τ} model

- In the L_µ-L_τ model, Z' only couples to particles with second and third lepton family numbers : μ , τ , ν_{μ} , and ν_{τ}
 - Two parameters : $m_{Z'}$ and g'

 $\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau - g'\bar{\nu}_{\mu,L}\gamma^{\mu}Z'_{\mu}\nu_{\mu,L} + g'\bar{\nu}_{\tau,L}\gamma^{\mu}Z'_{\mu}\nu_{\tau,L}$

- If dark matter carries the lepton family numbers, invisible BF can be larger if kinematically allowed.
- Can access to $m_{Z'} < 2m_{\mu}$
- This model can explain the muon g-2 anomaly
- Searches performed by Belle and BaBar, with muons
- interpretations with neutrino trident experiments CCFR and CHARM-II
- And BOREXINO limit > 10MeV
 - Not shown in the figure

Signature of invisible Z'

- Z' can be radiated off from muons
- Decays to either of ν_{μ} , and ν_{τ} (and DM) pairs.
 - $e^+e^- \rightarrow \mu^+\mu^- Z' \rightarrow \mu^+\mu^- \nu\nu$
 - Two muons and missing energy
- Typical cross section
 - ~10fb with g'=0.01 and M_{Z'} = 1GeV

Search for Z' in L_{μ} - L_{τ} model

- Data
 - 276pb⁻¹ in 2018 pilot run
- Trigger
 - two track with opening angle $\Delta \phi$ >90deg
- Recoil mass to reconstruct Z'
- Dominant backgrounds
 - − e⁺e⁻→μμ(γ)
 - $e^+e^- \rightarrow \tau \tau(\gamma)$
 - е⁺е⁻→ееµµ
 - Suppressed by lepton p_T against Z' direction

20220512

Limits for in $L_{\mu}\text{-}L_{\tau}$ model

- First limit with invisible Z' decays.
- Can search for $m_{Z'} < 2m_{\mu}$
 - Impossible with $Z' \rightarrow \mu \mu$
- We already have 1000 time more data than this analysis

Axion Like Particles

- Axion like particles (ALPs) emerge from
 - Spontaneous breaking of global symmetry
 - String compactification
 - 181820 species of ALPs in a model
- QCD Axion has a relation between mass and decay constant ($m_{\pi}f_{\pi} = m_{a}f_{a}$) while ALPs do not.
 - Large parameter space to explore
- For simplicity, ALP coupling to photon only \rightarrow 2 parameters
 - $g_{a\gamma\gamma}$: coupling constant
 - m_a : mass of ALP

$$\delta \mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2$$

- Decay width (lifetime)

$$\Gamma_a = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi}$$

Signature

- ALP can be generated from
 - ALP-strahlung
 - Photon fusion
 - under study
- Cross section

- ~1fb for
$$g_{a\gamma\gamma}$$
=10⁻⁴ GeV⁻¹

$$\sigma_a = \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24} \left(1 - \frac{m_a^2}{s}\right)^3$$

- Sequential two-body decays
 - e⁺e⁻→γa, a→γγ
 - Only three photons in a final states
- Belle II search for shorter lifetime region
 - Large coupling and large mass
 - beam dump experiments \rightarrow longer lifetime
 - two photons are resolved in EM calorimeters

Search for ALPs at Belle II

- Data
 - 445pb⁻¹ in 2018 pilot run
- Trigger
 - Energy sum in barrel calorimeter >1GeV
 - almost 100% efficiency
- Two Reconstruction technique
 - Invariant mass for low mass [0.2, 6.85]GeV
 - Recoil mass for high mass [6.85, 9.7]GeV

Limit on $\sigma(e^+e^- \rightarrow a\gamma)$

- No significant excess is observed
 - Largest local significance of 2.8 σ at m_a=0.447GeV
- Set a limit on σ .

 $-\sigma < 1pb$

Limit on ALP parameter space

- Coupling around 10⁻³GeV⁻¹ level
- World's best limit around 500MeV
- We can improve the sensitivity more than one order of magnitude in coupling with 50ab⁻¹ data
- Adding photon fusion process gives better limit

Other Dark Sector Searches

• Many searches are possible at Belle II and LHCb, and are in pipeline with more data

Summary

- Dark sector scenarios are very interesting
- Belle II and LHCb are good playgrounds for dark sector searches
- Several searches has been performed with limited statistics
 - Dark Photon
 - Dark Higgsstrahlung
 - Invisible Z'
 - Axion like particles
- World best limits has been obtained.
- Many searches are possible at Belle II and LHCb, and are in pipeline with more data
- Stay tuned

backup

Trigger and DAQ at Belle II

- Trigger
 - Adopted two-level trigger system
 - Level1 Hardware trigger
 - Maximum output rate 30kHz
 - Higher level software trigger
 - Maximum output rate 10kHz
- DAQ
 - Pipelined readout system

- This trigger and DAQ system allows triggering on dark sector signatures which was difficult at Belle
 - Single photon trigger
 - Single track trigger for missing energy events
 - Two-track trigger with missing energy events

SuperKEKB and Belle II

- Status and Plan
 - Pilot run in 2018
 - Without pixel detector
 - ~500pb⁻¹ data
 - Started experiment in 2019
 - Accumulated ~0.4ab⁻¹ so far
 - 40% of Belle
 - LS1 from July 2022
 - To install second layer of pixel detector
 - Resume the operation in 2023
 - ~4ab⁻¹ by 2025
 - LS2 around 2026
 - to upgrade SuperKEKB and Belle II to achieve 6x10³⁵ /cm²/s
 - 50ab⁻¹ will be accumulated around 2031

Trigger for dark Higgs

- Two-tier trigger system:
 - Hardware based low level trigger (L1)
 - Software based high level trigger (HLT)
- Reduce effects from beam backgrounds (Touschek effect, beam-gas scattering, radiative Bhabha, ...)
- L1 trigger
 - Max trigger rate 30KHz
 - Combines 4 sub-detector triggers; CDC, TOP, KLM, ECL
- Dedicated trigger lines for dark sector and low-multiplicity physics (not available in Belle):
 - Single photon / track (muon)
 - Multi-track triggers
 - ffo ≥ 2 full tracks with opening angle > 90°
 - ff30 ≥2 full tracks with opening angle > 30°
 - 3D neural trigger

Belle II Physics Book

- Published in Dec 2019
 - <u>https://arxiv.org/abs/1808.10567</u>
 - <u>https://doi.org/10.1093/ptep/ptz106</u>

Prog. Theor. Exp. Phys. 2019, 123C01 (654 pages) DOI: 10.1093/ptep/ptz106

The Belle II Physics Book

E. Kou^{75,*,§,†}, P. Urquijo^{145,‡,†}, W. Altmannshofer^{135,§}, F. Beaujean^{79,§}, G. Bell^{122,§}, M. Beneke^{114,§}, I. I. Bigi^{148,§}, F. Bishara^{150,16,§}, M. Blanke^{49,51,§}, C. Bobeth^{113,114,§}, M. Bona^{152,§}, N. Brambilla^{114,§}, V. M. Braun^{50,§}, J. Brod^{112,135,§}, A. J. Buras^{115,§}, H. Y. Cheng^{43,§}, C. W. Chiang^{92,§}, M. Ciuchini^{59,§}, G. Colangelo^{128,§}, A. Crivellin^{102,§}, H. Czyz^{156,29,§}, A. Datta^{146,§}, F. De Fazio^{53,§}, T. Deppisch^{51,§}, M. J. Dolan^{145,§}, J. Evans^{135,§}, S. Fajfer^{109,141,§}, T. Feldmann^{122,§}, S. Godfrey^{7,§}, M. Gronau^{62,§}, Y. Grossman^{15,§}, F. K. Guo^{45,134,§}, U. Haisch^{150,11,§}, C. Hanhart^{21,§}, S. Hashimoto^{30,26,§}, S. Hirose^{89,§}, J. Hisano^{89,90,§}, L. Hofer^{127,§}, M. Hoferichter^{168,§}, W. S. Hou^{92,§}, T. Huber^{122,§}, T. Hurth

Joint effort of theorists and experimentalists. Some of you contributed to the book. Thank you!

Inclusive Dimuon

- No isolation requirements
- Non-zero width considered

Search for $B \rightarrow Ka$, $a \rightarrow \gamma \gamma$ at BaBar

- Maybe next speaker Brian Shuve covers this?
 - Done by Brian

Search for visible Z' to $\mu\mu$ at Belle

- ISR effect is included in generator for the first time in this signature
- Comparable with BaBar for >1GeV

