Overview of R(D) and $R(D^*)$

Flavour Physics and CP Violation Conference

Racha Cheaib May 23, 2022

On behalf of the Belle, Belle II and LHCb collaborations

Lepton Flavour Universality

Discrepancies with the Standard Model have been observed in multiple LFU tests:

- Lepton Flavour Universality: gauge interactions of the three generations of leptons are identical once the mass difference is accounted for.
- Violation of LFU is a clear signal of new physics and hence the search for such signals in leading particle physics experiments.
- **Semileptonic** *B* decays: an excellent probe for SM precision measurements ($|V_{cb}|$ and $|V_{ub}|$) and an invaluable portal for lepton flavour universality tests.

decay $B \to D^* \tau \nu$ to the lighter lepton counterparts $B \to D^* \ell \nu, \ell = e, \mu.$

- Ratio allows for many uncertainties to cancel.
- Measurement has been performed by BaBar, Belle, and

R(D) and $R(D^*)$

rs	
	_
	-
	-
	_
	_
	-
	_
	_
	_
	_
	_
	_
14	_
010	
010	_
	_
	_

- Wide range of measurements at the *B*-factories and LHCb with hadronic and/or leptonic τ decays.
- Final state cannot be fully reconstructed due to lepton neutrinos.

R(D) and $R(D^*)$

B-factories: hadronic or semileptonic B tagging to exploit the full event kinematics and identify missing energy components.

LHCb: excellent vertexing to suppress leading backgrounds and approximate B_{sig} kinematics.

LHCb

- $R(D^*)$ muonic with $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$ Phys. Rev. Lett. **115** 112001 (2015)
- $R(D^*)$ hadronic with $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu_{\tau}}$ Phys. Rev. Lett. **120** 171802 (2018) Phys. Rev. D **97** 072013 (2018)

- Measurement performed with 3.0 fb⁻¹ of LHCb data collected during 2011-2012.
- Common reconstruction procedure for both the signal mode $\bar{B^0} \to D^{*+} \tau^- \nu_{\tau}$ and normalization mode $\bar{B^0} \to D^{*+} \mu^- \nu_{\mu}$.

$$R(D^*) = \frac{\mathscr{B}(\bar{B} \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathscr{B}(\bar{B} \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

- MVA algorithm developed to distinguish whether a charged track originated from the B_{sig} or the rest of event.
 - Based on track separation from PV, track angle, etc... lacksquare
- Separation of signal and normalization using: $E_{\mu}^*, m_{miss}^2, q^2$ in the *B* rest frame:

$$q^2 = (p_B - p_D)^2$$
 and $m_{miss}^2 = (p_B - p_{D^*} - p_{\mu})^2$

Phys. Rev. Lett. **115** 112001 (2015)

- *B* rest frame determined using:
 - the unit vector from the PV to the *B* decay vertex
 - p_7 of B given by $(p_R)_7 = (m_R/m_{reco})(p_{reco})_Z$

R(D*) muonic

- Challenging backgrounds:
 - Semileptonic decays to excited charm states: $B \rightarrow D^{(**)} \ell \nu$
 - Double charm *B* decays: $B \to D^{(*)}H_cX, H_c \to \mu\nu_{\mu}X$
 - B decays with hadrons misidentified muons

Phys. Rev. Lett. 115 112001 (2015)

Maximum likelihood fit of m_{miss}^2 , E_{μ}^* , and q^2 to extract relative signal, normalization and background contributions.

R(D*) muonic

- Main systematic uncertainties from the limited s the MC samples.
- Kinematic distribution for events with hadrons misidentified as muons are determined from con samples.

```
R(D^*) = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{sy})
```

- Result is 1.7 sigma over the SM.
- First measurement of R(D*) at a hadronic col
- Improved modeling of background events can de systematic uncertainty in future results.
- Future simultaneous measurement of R(D) an R(D*) at LHCb with Run1 data and Run 2 da 4 times the available statistics.
- Full angular analysis of $B^0 \to D^{*-} \mu^+ \nu_{\mu}$ and $B^0 \to D^{*-} \tau^+ \nu_{\tau}$

Phys. Rev. Lett. 115 112001 (2015)

•		
size of	Model uncertainties	Absolute size (>
	Simulated sample size	2.0
	Misidentified μ template shape	1.6
ntrol	$B^0 \to D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form factors	0.6
	$\bar{B} \to D^{*+}H_c (\to \mu\nu X') X$ shape corrections	s 0.5
	$\mathcal{B}(\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B} \to D^{**} \mu^- \bar{\nu}_{\mu})$	0.5
ist)	$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
/3()	Corrections to simulation	0.4
	Combinatorial background shape	0.3
	$\bar{B} \to D^{**} (\to D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ form factors	0.3
	$\bar{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
llider.	Total model uncertainty	2.8
ecreas	Normalization uncertainties	Absolute size (>
_	Simulated sample size	0.6
nd	Hardware trigger efficiency	0.6
ata.i.	Particle identification efficiencies	0.3
) ==	Form factors	0.2
	$\mathcal{B}(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau)$	< 0.1
	Total normalization uncertainty	0.9
	Total systematic uncertainty	3.0

LHCb

- $R(D^*)$ muonic with $\tau^+ \to \mu^+ \nu_\mu \bar{\nu_\tau}$ Phys. Rev. Lett. **115** 112001 (2015)
- $R(D^*)$ hadronic with $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu_{\tau}}$ Phys. Rev. Lett. **120** 171802 (2018) Phys. Rev. D **97** 072013 (2018)

$$\begin{split} \mathbf{R}(D^{*}) &= \frac{\mathscr{B}(B^{0} \to D^{-*}\tau^{+}\nu_{\tau})}{\mathscr{B}(B^{0} \to D^{*-}3\pi)} = \frac{N_{sig}}{N_{norm}} \frac{\varepsilon_{sig}}{\varepsilon_{norm}} \\ & \text{Convert it to } \mathbf{R}(D^{*}) \text{ via } \mathbf{R}(D^{*}) = \kappa(D^{*-}) \times \frac{\mathscr{B}(B^{0} \to D^{*-}2\pi)}{\mathscr{B}(B^{0} \to D^{*-}2\pi)} \end{split}$$

- Large backgrounds originating from $B \rightarrow D^* 3\pi X$ and $B \rightarrow DD^{(*)}$
 - ~ 100x the signal
 - Reduced by requiring $\Delta z / \sigma_z > 4$

Phys. Rev. Lett. 120 171802 (2018) *) hadronic $_{m} \mathscr{B}(\tau^{+} \to 3\pi\bar{\nu_{\tau}}) + \mathscr{B}(\tau^{+} \to 3\pi\pi^{0}\bar{\nu_{\tau}})$ $D^{*-}3\pi$) $D^{*-}\mu^{+}\nu_{\mu})$ π^{-} $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ $ar{D}^0$ *B* vertex determined through a fit of all the reconstructed Dparticles in the decay chain. \boldsymbol{B}^0 $\Delta z > 4\sigma_{\Delta z}$ PV

Momentum of τ can be determined up to two fold ambiguity using:

- Unit-vector between B^0 vertex and PV
- Unit vector between 3π vertex and B^0 vertex

R(D*) hadronic

- $B \rightarrow D^{(*)}D^{(*)}(X)$ backgrounds suppressed using MVA :
 - Different resonant structures of τ and D_s^+ decays ullet
 - Neutral isolation
 - Kinematic properties : $m(\pi^+\pi^-)$, $m(D^{(*-)}\pi^+\pi^-\pi^+)$, etc..
- Remaining backgrounds from:
 - $X_h \to D^{(*-)}D_s^+(X)$
 - $X_b \to D^{(*-)}D^+(X)$
 - $X_b \to D^{(*-)}D^0X$
 - Combinatorial

•
$$X_b \to D^{**} \tau \nu$$

Related to the signal yield by a proportionality factor of: 0.110 ± 0.044

 $m(D^{*-}\pi^{+}\pi^{-}\pi^{+})$ [MeV/c²]

Phys. Rev. Lett. **120** 171802 (2018)

Signal yield extracted via a 3 dimensional fit to t_{τ} decay time and q^2 in 4 bins of the BDT output.

R(D*) hadronic

Phys. Rev. Lett. 120 171802 (2018)

R(D*) hadronic

- Leading systematic uncertainties:
 - Simulated sample size.
 - Knowledge of the D_s^+ decay model.
 - Difference in trigger efficiency for signal and normalization modes.
- First result on R(D*) with hadronic tau at the LHC, 1.1σ above the SM expectation.

```
Combined with R(D*) muonic from the LHC:
```

 $R(D^*) = 0.31 \pm 0.0160(\text{stat}) \pm 0.021(\text{sys})$

2.2 σ above the SM.

- External measurements of the double charm decays can decrease the systematic uncertainty.
- Future R(D*) measurement using Run 2 data, increased statistics will allow for higher statistics in the control samples.
- Planned measurement of longitudinal D* polarisation in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

Phys. Rev. Lett. 120 171802 (2018)

Source	$\delta R(D^{*-})/R(L$
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**}\tau\nu$ and $D^{**}_s\tau\nu$ feeddowns	2.7
$D_s^+ \rightarrow 3\pi X$ decay model	2.5
$B \rightarrow D^{*-}D_s^+X, B \rightarrow D^{*-}D^+X,$	3.9
$B \rightarrow D^{*-}D^0X$ backgrounds	
Combinatorial background	0.7
$B \rightarrow D^{*-} 3\pi X$ background	2.8
Efficiency ratio	3.9
Normalization channel efficiency	2.0
(modeling of $B^0 \rightarrow D^{*-}3\pi$)	
Total uncertainty	9.1

LHCb has also measured $R(J/\psi) = \frac{\mathscr{B}(B_c \to J/\psi\tau^+\nu_{\tau})}{\mathscr{B}(B_c \to J/\psi\mu^+\nu_{\mu})}$, with $\tau \to \mu^+\nu_{\mu}\nu_{\tau}$ is 5000

 $R(J/\psi) = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{sys})$

- First observation of $\mathscr{B}(B_c \to J/\psi \tau^+ \nu_{\tau})$ with 3.1 σ significance.
- The result is 2σ above the SM.
- Large uncertainty from unknown form factors of B_c decay.

PRL 120, 121801 (2018)

More LFU tests: $R(J/\psi)$ and $R(\Lambda_c)$

LHCb has also measured $R(J/\psi) = \frac{\mathscr{B}(B_c \to J/\psi \tau^+ \nu_{\tau})}{\mathscr{B}(B_c \to J/\psi \mu^+ \nu_{\mu})}$, with $\tau \to \mu^+ \nu_{\mu} \nu_{\tau}$ $R(J/\psi) = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{sys})$

- First observation of $\mathscr{B}(B_c \to J/\psi \tau^+ \nu_{\tau})$ with 3.1 σ significance.
- The result is 2σ above the SM.
- Large uncertainty from unknown form factors of B_c decay.

NEW:

•
$$R(\Lambda_c^+) = \frac{\mathscr{B}(\Lambda_b \to \Lambda_c \tau^+ \nu_{\tau})}{\mathscr{B}(\Lambda_b \to \Lambda_c \mu^+ \nu_{\mu})}$$
, with $\tau \to \pi^+ \pi^- \pi^+ \nu_{\tau}$

- First observation of $\mathscr{B}(\Lambda_b \to \Lambda_c \tau^+ \nu_{\tau})$ with 6.1 σ significance.
- $R(\Lambda_c^+) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$

agrees with the SM prediction of $R(\Lambda_c^+) = 0.324 \pm 0.004$.

- Largest systematic uncertainty from the template shapes of background modes.
- Additional systematic uncertainty from external branching fractions.
- Constrains NP models that predicts high values of $R(\Lambda_c^+)$

15

R(D) and R(D*) at Belle

Hadronic tagging with leptonic tau decays Phys. Rev. D 92, 072014 (2015)

Hadronic tagging with hadronic tau decays Phys. Rev. Lett. **118**, 211801 (2017)

Semileptonic tagging with leptonic tau decays Phys. Rev. Lett. **124**, 161803, 2020

R(D) and R(D*) at Belle

Hadronic tagging with leptonic tau decays Phys. Rev. D 92, 072014 (2015)

Hadronic tagging with hadronic tau decays Phys. Rev. Lett. **118**, 211801 (2017)

Semileptonic tagging with leptonic tau decays Phys. Rev. Lett. **124**, 161803, 2020

R(D) and $R(D^*)$ at B-factories

- The B-factories employ *B*-tagging to measure R(D) and $R(D^*)$.
- $\Upsilon(4S)$ produced almost at rest, and instantly decays into a pair of B mesons. \bullet
- Exclusive reconstruction of one of the *B* mesons, B_{tag}, using hadronic and semi-leptonic modes.

 Θ

Efficiency

$$p_{Bsig} \equiv (E_{Bsig}, \vec{p}_{Bsig}) = \left(\frac{m_{\Upsilon(4S)}}{2}, -\vec{p}_{Btag}\right)$$

B_{si}

- Measured using 711 fb⁻¹ of Belle data
- Reconstruct first *B* exclusively via 1149 hadronic modes in a hierarchal approach.
 - Efficiency of 0.3% for B⁺ and 0.2% for B⁰.

- Remaining information, tracks and cluster, are used for signal and normalisation reconstruction.
- Reconstruct D⁰, D⁺ D^{*0}, D^{*+} via multiple modes.
- Combine with lepton and determine m_{miss}^2 .

- Exact determination of q^2 and m_{miss}^2 . lacksquare
- Region below $m_{miss}^2 < 0.85 \text{ GeV}^2/c^4$ is dominated by normalisation mode.

Phys. Rev. D 92, 072014 (2015)

E_{ECL} the sum energy of all neutral clusters in the event after the full signal selection is applied: $B_{sig} + B_{tag}$.

 m_{miss}^2 in m_{miss}^2 <0.85 GeV²/c^{4 t}o extract normalisation yield O'_{NB} in m^2_{miss} >0.85 GeV²/c⁴ to extract signal and background yields.

R(D) and $R(D^*)$ with Hadronic Tagging

- Leading systematic uncertainties:
- Final result:
 - modelling and composition of the $B \to D^{(**)} \ell \nu$ background.
 - Shape of the BDT output
 - Fixed factors in the fit, determined from simulation.

$R(D) = 0.375 \pm 0.064 \pm 0.026$ $R(D*) = 0.293 \pm 0.038 \pm 0.015$

	$R(D)\left[\% ight]$	$R(D^*)[\%]$	Correlatio
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.0
D^{**} composition	1.3	3.0	-0.6
Fake D yield	0.5	0.3	0.2
Fake ℓ yield	0.5	0.6	-0.6
D_s yield	0.1	0.1	-0.8
Rest yield	0.1	0.0	-0.7
Efficiency ratio f^{D}	2.5	0.7	-0.9
Efficiency ratio f^{D^0}	1.8	0.4	0.8
Efficiency ratio $f_{ m eff}^{D^{*+}}$	1.3	2.5	-0.9
Efficiency ratio $f_{ m eff}^{D^{*0}}$	0.7	1.1	0.9
CF double ratio g^+	2.2	2.0	-1.(
${ m CF}$ double ratio g^0	1.7	1.0	-1.(
Efficiency ratio $f_{ m wc}$	0.0	0.0	0.8
$M_{ m miss}^2$ shape	0.6	1.0	0.0
$o_{\rm NB}^\prime { m shape}$	3.2	0.8	0.0
Lepton PID efficiency	0.5	0.5	1.(
Total	7.1	5.2	-0.3

Compared with previous BaBar measurement using hadronic tagging and leptonic tau decays.

PRL 100, 101802 (2012), PRD 88, 072012 (2013)

R(D) and $R(D^*)$ with Hadronic Tagging

- Leading systematic uncertainties:
- Final result:
 - modelling and composition of the $B \rightarrow D^{(**)} \ell \nu$ background.
 - Shape of the BDT output
 - Fixed factors in the fit, determined from simulation.

$R(D) = 0.375 \pm 0.064 \pm 0.026$ $R(D*) = 0.293 \pm 0.038 \pm 0.015$

R(D) and R(D*) at Belle

Hadronic tagging with leptonic tau decays Phys. Rev. D 92, 072014 (2015)

Hadronic tagging with hadronic tau decays Phys. Rev. Lett. **118**, 211801 (2017)

Semileptonic tagging with leptonic tau decays Phys. Rev. Lett. **124**, 161803, 2020

Phys. Rev. Lett. 118 211801 (2017) R(D*) & Tau Polarization

• Measure τ polarisation with $\tau^- \to \pi^- \nu_{\tau}$ and $\tau^- \to \rho^- \nu_{\tau}$ using the full Belle dataset.

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+}(D^{(*)}) - \Gamma^{-}(D^{(*)})}{\Gamma^{+}(D^{(*)}) + \Gamma^{-}(D^{(*)})}$$

- Sensitive to new physics contributions. ullet
- SM predicts: lacksquare
 - $P_{\tau}(D) = 0.325 \pm 0.009$
 - $P_{\tau}(D^*) = -0.497 \pm 0.013$
- Can be measured via:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = 1 + \alpha P_{\tau} \cos\theta_{\text{hel}}$$

• $\alpha = 1$ for $\tau^- \to \pi^- \nu_{\tau}$
• $\alpha = 0.45$ for $\tau^- \to \rho^- \nu_{\tau}$

- Divide signal sample into 2 regions:
 - $\cos\theta_{\rm hel}$ >0 forward
 - $\cos\theta_{\rm hel}$ <0 backward
- Extract signal and background yields in a simultaneous fit to EECL in 10 8 samples:

 $(B^-, B^0) \times (\pi^- \nu_{\tau}, \rho \nu_{\tau}) \times (\text{backward, forward})$

$$P_{\tau}(D^*) = \frac{\left[2(N_{sig}^F - N_{sig}^B)\right]}{\left[\alpha(N_{sig}^F + N_{sig}^B)\right]} \quad \text{and} \quad R(D^*) = \frac{\epsilon_{norm}N_{sig}}{\mathscr{B}_{\tau}\epsilon_{sig}N_{nd}}$$

 $R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst})$ $P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}),$

Phys. Rev. Lett. 118 211801 (2017) R(D*) & Tau Polarization

Phys. Rev. Lett. 118 211801 (2017) R(D*) & Tau Polarization P_t(D*)

Leading systematic uncertainties:

- Hadronic *B* decay decomposition
- Limited size of MC sample
- Fake D* component shape and yield

 $R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst})$ $P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}),$ -1.5

First measurement of tau polarization:

 $P_{\tau}(D^*) > + 0.5$ at 90% CL

R(D) and R(D*) at Belle

Hadronic tagging with leptonic tau decays Phys. Rev. D 92, 072014 (2015)

Hadronic tagging with hadronic tau decays Phys. Rev. Lett. **118**, 211801 (2017)

Semileptonic tagging with leptonic tau decays Phys. Rev. Lett. **124**, 161803, 2020

Phys. Rev. Lett. 124, 161803, 2020 R(D) and $R(D^*)$ with Semileptonic Tagging

Based on a data sample with 772 x $10^6 BB$ pairs

• Measure
$$R(D^*) = \frac{\mathscr{B}(\bar{B} \to D^{(*+)}\tau^-\bar{\nu}_{\tau})}{\mathscr{B}(\bar{B} \to D^{(*+)}\ell^-\bar{\nu}_{\ell})}$$
 with $\tau^+ \to \ell^+ \nu_{\ell} \bar{\nu}_{\tau}$

• Use semileptonic tagging with a hierarchical based on a BDT classifier that reconstructs $D^{(*)}\ell \bar{\nu_{\ell}}$ and $D\ell \bar{\nu_{\ell}}$.

 $2E_{beam}E_{D^{(*)}\ell} - m_B^2 - m_{D^{(*)}\ell}^2$ Separate well reconstructed B_{tag} candidates with $cos\theta_{B,D^*\ell} =$ $2|p_B||p_{D^{(*)}\ell}$

Reconstruct signal side $D^* \ell$ using a list of D^0 and D^+ modes Suppress background events using E_{ECL}<1.2 GeV.

Develop MVA to separate between signal and normalization from backgrounds based on variables such as m_{miss}^2 and E_{vis} .

- Extra signal and normalization yields from a fit O_{cls} and E_{ecl} in four samples: $D^{*+}\ell, D^{*0}\ell, D^+\ell, D^0\ell$
- Feed down from D*I to DI sample is large and left free in the fit .
- Background yield from $B \rightarrow D^{(**)} \tau \nu$ is left free in the fit. Other backgrounds are fixed to their MC expectation.
- Fake D*: yield of fake or misreconstructed D* mesons, determined using sideband data.

Phys. Rev. Lett. 124, 161803, 2020 R(D) and $R(D^*)$ with Semileptonic Tagging

- Leading uncertainties
 - Limited MC sample size:
 - PDF shapes in the final fit
 - Efficiency ratio of signal to normalization events
 - Reconstruction efficiency of feed down yield.
 - Limited knowledge of $B \rightarrow D^{(**)} \ell \nu$ branching fractions

$R(D^*) = 0.283 \pm 0.018 \pm 0.014$ $R(D) = 0.307 \pm 0.037 \pm 0.016$

Most precise measurement performed to date! In agreement with the SM within 0.2σ and 1.1σ .

Source	$\Delta \mathcal{R}(D)$ (%)	$\Delta \mathcal{R}(D^*)$ (%)	Corre
D^{**} composition	0.76	1.41	-(
PDF shapes	4.39	2.25	-0
Feed-down factors	1.69	0.44	(
Efficiency factors	1.93	4.12	-(
Fake $D^{(*)}$ calibration	0.19	0.11	-0
B_{tag} calibration	0.07	0.05	-0
Lepton efficiency	0.36	0.33	-0
and fake rate			
Slow pion efficiency	0.08	0.08	-0
${\cal B}$ decay form factors	0.55	0.28	-0
Luminosity, f^{+-} , f^{00}	0.10	0.04	-0
and $\mathcal{B}(\Upsilon(4S))$			
$\mathcal{B}(B \to D^{(*)} \ell \nu)$	0.05	0.02	-0
$\mathcal{B}(D)$	0.35	0.13	-0
$\mathcal{B}(D^*)$	0.04	0.02	-0
$\mathcal{B}(\tau^- o \ell^- \bar{ u}_\ell u_ au)$	0.15	0.14	-0
Total	5.21	4.94	-0

Belle II

Belle II experiment

- Luminosity projected to be 30 x larger than that of Belle.
 - 20x smaller vertical beam size.
 - 1.5 x beam current.
- Improvements the Belle II detector :

Central beam pipe: decreased diameter from 3cm to 2cm (Beryllium)

Vertexing: new 2 layers of pixels, upgraded 4 double-sided layers of silicon strips

Tracking: drift chamber with smaller cells, longer lever arm, faster electronics

PID: new time-of-flight (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: upgrade of electronics and processing with legacy CsI(Tl) crystals

 K_L and μ : scintillators replace RPCs (endcap and inner two layers of barrel) EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Belle II dataset

now collected ~380 fb-1.

Preparing the toolkit

B-tagging at Belle II

- Exclusive reconstruction of *B* mesons using \bullet hadronic and semi-leptonic modes.
- Achieved using the Full Event Interpretation (FEI), a multivariate algorithm based on a hierarchal approach.

• Employs over 200 Boosted Decision Trees to reconstruct $\sim 10000 B$ decay chains.

Outputs a signal probability which separates correctly reconstructed B mesons.

30-50% improvement in efficiency compared to Full Reconstruction at Belle.

	B^{\pm}	B^0		B^{\pm}
Hadronic			Semileptonic	
FEI with FR channels FEI FR SER	$\begin{array}{c} 0.53 \ \% \\ 0.76 \ \% \\ 0.28 \ \% \\ 0.4 \ \% \end{array}$	$\begin{array}{c} 0.33 \ \% \\ 0.46 \ \% \\ 0.18 \ \% \\ 0.2 \ \% \end{array}$	FEI FR SER	1.80 % 0.31 % 0.3 %

Comp. Softw. Big. Sci. 3 (2019)

Lepton Identification

Efficiency, mis-ID probability

- Belle II has global particle identification based on almost all detector subsystem inputs.
- PID performance and fake rate evaluated in bins of the polar \bullet angle using standard candle processes.

e.g. electron efficiency of 94% and pion misID at 2% for $\mathcal{L} > 0.9$

• Fake rates improved for low momenta using Boosted Decision Tree PID with ECL shower shape variables to separate between lepton and hadrons.

At p<1 GeV/c, electron fake rates reduced by a factor of 10.

36

õ

 E_{ECL} is a key variable for many semi-leptonic and missing energy analyses, specifically $B \rightarrow D * \tau \nu_{\tau}$. \bullet

- Different contributions to E_{ECL} :
 - Mis-reconstructed candidates
 - Hadronic split-offs
 - Beam background contributions

EECL

Develop a multi-variate algorithm (BDT) to suppress beam background and fake photon or hadronic shower split-off contributions.

R(D) and $R(D^*)$

One of the high priority analyses for Belle II.

 $R(D) = \frac{\mathscr{B}(\bar{B} \to D^+ \tau^- \bar{\nu_{\tau}})}{\mathscr{B}(\bar{B} \to D^+ \ell^- \bar{\nu_{\ell}})} \quad \text{and} \quad R(D^*) = \frac{\mathscr{B}(\bar{B} \to D^{*+} \tau^- \bar{\nu_{\tau}})}{\mathscr{B}(\bar{B} \to D^{*+} \ell^- \bar{\nu_{\ell}})}$

3

Initial plan: confirm anomaly with ~0.5 ab⁻¹ of Belle II data.

Data sample in ab^{-1}

First results planned by Summer 2022.

Conclusion

- what lies beyond the SM.
- Future measurements planned:
 - LHCb: R(D), R(D*), R(J/ψ), R(Λ_c)
 - Belle II: R(D), $R(D^*)$, R(X)
 - BaBar: R(D) and $R(D^*)$ with semileptonic tagging (Talk by Yinxuan Li)
- should be zooming in on the New Physics if it is there.

• R(D) and $R(D^*)$ is a stringent test of Lepton Flavour Universality and a valuable portal for

• Combined with angular analyses measurements of $B \to D^* \ell \nu$ and $B \to D^* \tau \nu$ decays, we

