Charmless B decay at Belle II

- Introduction
 SuperKEKB
 & BelleII
- **B** →η' **K**
- $\bullet \ B^0 \to K^0 \pi^0$
- $B^+ \rightarrow \rho^+ \rho^0$
- Summary

M.-Z. Wang on behalf of BelleII Collaboration 2022/6/2@ Non-leptonic B meson decays workshop

Findings from B-factories

SuperKEKB nano-beam technology

Belle II detector

- High trigger rate
- Higher beam background
- New tracking system and improved vertexing capability
- New particle identification systems
- Better time resolution at calorimeter

Belle II international collaboration

- 26 countries
- 123 institutions
- $\sim \frac{1160}{\text{working members}}$

Countries (institutions):

Armenia (1), Australia (3), Austria (1), Canada (5), China (12), Czechia (1), France (3), Germany (12), India (9), Israel (1), Italy (9), Japan (16), Malaysia (1), Mexico (3), Poland (1), Russia (6), Saudi Arabia (1), Slovenia (2), South Korea (9), Spain (1), Taiwan (3), Thailand (2), Turkey (1), USA (18), Ukraine (1), Viet Nam (1).

Accumulated data

In this presentation, only a maximum of 190 fb-1 used

Luminosity

Status:

- ▷ Collected ~ 336 fb⁻¹ since April 2019
- Slower luminosity accumulation than initially planned, but with ~90% data-taking efficiency
- \triangleright Record-breaking instantaneous luminosity: $3.8 \times 10^{34} {\rm cm^{-2} s^{-1}}$

Highest daily integrated luminosity: 2.2 fb⁻¹

Plans:

- Short-term plan: shutdown in 2023:
 - $\triangleright~$ full PXD installation \rightarrow important to maintain good vertex resolution at high luminosity
 - Replacement of 50% of barrel TOP PMTs
- ▶ Goal: 50 ab⁻¹

Detector performance

Mainly using D^(*) decays to validate

- Excellent vertexing/tracking
- Good K-π separation
- Well simulated photon tagging

. The output of the FBDT classifier for photons in $D^{*+} \to \overline{D}^0 \pi^+$, $\overline{D}^0 \to K_s^0 \pi^0$, $K_s^0 \to \pi^+ \pi^-$

Physics topics at Belle II

Basic quark diagrams for charmless B decays

interference between comparable amplitudes causes big cp violation

Looking for deviations from the SM predictions of a small BF or Acp

Continuum background suppression

Need to develop good pattern recognition tools (AI) in order to fight against huge continuum background in rare B decays!

 $q\bar{q}$ pair event

systematic uncertainty will shrink after better understanding of detector performance B →η' K

already compatible to the world average

	This analysis	World average	
Channel	${\cal B}~(imes 10^6)$		
$B^{\pm} \to \eta' K$	$63.4 + 3.4 \\ -3.3 \\ (stat) \pm 3.4 \\ (syst)$	70.4 ± 2.5	
$B^0 \to \eta' K^0$	$59.9 + 5.8_{-5.5} (stat) \pm 2.7 (syst)$	66 ± 4	

0 E

5.22

5.24

5.26

 $M_{\rm bc}$ [GeV/c²]

5.28

Mode	N_{sig}	sig.	$\varepsilon(\%)$	$\varepsilon \mathcal{B}(\%) \qquad \mathcal{B}(10^{-6})$
$B^{\pm} \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) K^{\pm}$	$263 \ ^{+18}_{-19}$	25.7	31.7 ± 0.03	5.45 $63.9 + 4.6 \pm 4.0$
$B^{\pm} \to \eta'(\rho(\to \pi^+\pi^-)\gamma)K^{\pm}$	$335 \ ^{+26}_{-25}$	22.2	24.2 ± 0.04	7.05 62.9 $^{+4.8}_{-4.8} \pm 5.5$
$B^0 \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) K_S^0$	$80.0 \begin{array}{c} +11.2 \\ -10.4 \end{array}$	13.8	31.0 ± 0.03	1.80 61.6 $^{+8.6}_{-8.0} \pm 3.9$
$B^0 \to \eta'(\rho(\to \pi^+\pi^-)\gamma)K_S^0$	$99.7 \ ^{+14.2}_{-12.7}$	14.2	23.6 ± 0.04	$2.35 58.5 \ ^{+7.9}_{-7.4} \pm 4.4$

5.3

Acp measurement for $B^0 \rightarrow K^0 \pi^0$

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} [1 + q\{\mathcal{A}\cos(\Delta m_{d}\Delta t) + \mathcal{S}\sin(\Delta m_{d}\Delta t)\}]$$
SM: direct $CPV \sim 0$
May sensitive to NP if $A_{K_{S}^{0}\pi^{0}} \neq 0$
SM: time-dependent CPV
 $S_{K_{S}^{0}\pi^{0}} = sin(2\phi_{1})$

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = 0$$

• $B^0 \to K_S^0 \pi^0$ is important to test isospin sum-rule

- Uncertainty is dominated by $A_{K^0_s\pi^0}$
- Feasible at Belle-II

Null sensitivity can be down to 0.03 level in the long run

 $B^0 \rightarrow K^0 \pi^0$

 $-0.41^{+0.30}_{-0.32} \pm 0.09$

 A_{CP}

 -0.01 ± 0.10

 $B^+ \rightarrow \rho^+ \rho^0$ $B^+ \to \rho^+(\pi^+\pi^0)\rho^0(\pi^+\pi^-)$

rediscovery

Using combined $\mathbf{B} \rightarrow \rho \rho$ measurements and isospin symmetries to have better constrain on the hadronic uncertainties

The CKM unitary angle ϕ_2 can be determined by the measurements of BF and A_{CP} of $B \rightarrow \rho \rho$

arXiv:2109.11456

 $A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}, \quad \bar{A}^{-0} = \frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00}$

Update of $B^+ \rightarrow \rho^+ \rho^0$ 189.8 fb⁻¹

Can extract α using info from three isospinrelated decays $B^+ \rightarrow \rho^+ \rho^0$, $B^0 \rightarrow \rho^+ \rho^-$, and $B^0 \rightarrow \rho^0 \rho^0$ PRL 65 (1990) 3381 Belle II is unique having access to all of them

Update of $B^+ \rightarrow \rho^+ \rho^0$ 189.8 fb⁻¹

	Results	PDG
A _{CP}	$-0.069 \pm 0.068 \pm 0.060$	(-0.05 ± 0.05)
$BF(10^{-6})$	$23.2^{+2.2}_{-2.1} \pm 2.7$	(24.0 ± 1.9)
f_L	$0.943^{+0.035}_{-0.033} \pm 0.027$	(0.950 ± 0.016)

Expected physics results

The Belle II Physics Book

Prog Theor Exp Phys (2019) arXiv:1808.10567 [hep-ex]

Summary

- BelleII will collect ~500 fb⁻¹ data before long shutdown in 2023
- Some rediscovery results were obtained with ≤190fb⁻¹ data
- We have prepared analysis tools to better tag neutral final state particles and to suppress continuum background
- LHCb and Belle II are complementary in new physics search