

# Inclusive semileptonic $B \rightarrow X_c \ell \nu$ decays at Belle (II)



Raynette van Tonder Challenges in Semileptonic *B* Decays 2022

raynette.vantonder@mcgill.ca

### Data used in $b \rightarrow c$ inclusive analyses

| BaBar  | <e<sup>n<sub>l</sub>&gt;: n=0,1,2,3 [PRD 69, 111104 (2004), PRD 81, 032003 (2010)]<br/><m<sup>2n<sub>X</sub>&gt;: n=1,2, 3 [PRD 81, 032003 (2010)]</m<sup></e<sup> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Belle  | <e<sup>nl&gt;: n=0,1,2,3 [PRD 75, 032001 (2007)]<br/><m<sup>2nx&gt;: n=1,2 [PRD 75, 032005 (2007)]</m<sup></e<sup>                                                 |
| CDF    | <m<sup>2n<sub>X</sub>&gt;: n=1,2 [PRD 71, 051103 (2005)]</m<sup>                                                                                                   |
| CLEO   | <m<sup>2n<sub>X</sub>&gt;: n=1,2 [PRD 70, 032002 (2004)]<br/><e<sup>n<sub>Y</sub>&gt;: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>                                 |
| DELPHI | <e<sup>nl&gt;: n=1,2,3<br/><m<sup>2nX&gt;: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>                                                                              |

• Newest measurement is from the year 2010!

### Data used in $b \rightarrow c$ inclusive analyses

| BaBar  | <e<sup>n<sub>l</sub>&gt;: n=0,1,2,3 [PRD 69, 111104 (2004), PRD 81, 032003 (2010)]<br/><m<sup>2n<sub>X</sub>&gt;: n=1,2, 3 [PRD 81, 032003 (2010)]</m<sup></e<sup> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Belle  | <e<sup>nl&gt;: n=0,1,2,3 [PRD 75, 032001 (2007)]<br/><m<sup>2nx&gt;: n=1,2 [PRD 75, 032005 (2007)]</m<sup></e<sup>                                                 |
| CDF    | <m<sup>2n<sub>X</sub>&gt;: n=1,2 [PRD 71, 051103 (2005)]</m<sup>                                                                                                   |
| CLEO   | <m<sup>2n<sub>X</sub>&gt;: n=1,2 [PRD 70, 032002 (2004)]<br/><e<sup>n<sub>γ</sub>&gt;: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>                                 |
| DELPHI | <e<sup>nl&gt;: n=1,2,3<br/><m<sup>2nX&gt;: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>                                                                              |



# A brief recap



# A brief recap



### Belle II $\mathcal{B}(B \to X_c \ell \nu_\ell)$ meas.

- First presented in summer 2021
- Belle II data sample: 62.8 fb<sup>-1</sup>
- Requires one well identified signal lepton
- Exploits missing mass and momentum distributions to reject backgrounds
- Estimate signal yield with binned likelihood fit in  $p_{\ell}^*$ 
  - separates electron and muon channels

| Yield  | Electron mode                    | Muon mode                         |
|--------|----------------------------------|-----------------------------------|
| Signal | $(1.932 \pm 0.006) 	imes 10^{6}$ | $(1.501 \pm 0.007) \times 10^{6}$ |



### Belle II $\mathcal{B}(B \to X_c \ell \nu_\ell)$ meas.

- **Belle II**  $\int \mathcal{L} dt = 62.8 \, \text{fb}^{-1}$  $\times 10^{6}$ 2.00  $B \rightarrow X_c e v$ b→c **BB** background 1.75 Events / (0.084 GeV) 1.20 1.00 1.00 0.22 0.20 Preliminary Continuum (off-res.) Data Electron momentum in centre-of-mass frame 0.25 0.00 0.025 Data – MC Data 0.000 -0.025 0.5 1.0 1.5 2.0 2.5 Muon mode  $p^*$  in GeV ×10<sup>6</sup> Belle II  $\int \mathcal{L} dt = 62.8 \, \text{fb}^{-1}$ 3.0  $B \rightarrow X_c \mu v$  $b \rightarrow c$ BB background Preliminary Continuum (off-res.) Data Muon momentum in centre-of-mass frame 0.5 0.0 Data – MC Data 0.00 -0.050.5 1.5 2.0 2.5 1.0  $p^*$  in GeV
- First presented in summer 2021
- Belle II data sample: 62.8 fb $^{-1}$ •
- Requires one well identified signal lepton •
- Exploits missing mass and momentum distributions lacksquareto reject backgrounds
- Estimate signal yield with binned likelihood fit in  $p_{\ell}^*$ 
  - separates electron and muon channels

Yield Electron mode  $||(1.932 \pm 0.006) \times 10^6|(1.501 \pm 0.007) \times 10^6|$ Signal

(average of electron and muon channels)

$$\mathcal{B}(B \to X_c \ell \nu) = (9.75 \pm 0.03 (\text{stat}) \pm 0.47 (\text{sys}))\%$$

Leading systematics:

 $B \rightarrow X_c \ell \nu$  branching fractions + form factors

arXiv:2111.09405

### Belle II $\mathcal{B}(B \to X_c \ell \nu_\ell)$ meas.



- Exploits missing mass and momentum distributions • to reject backgrounds
- Estimate signal yield with binned likelihood fit in  $p_{\ell}^*$ 
  - separates electron and muon channels

First presented in summer 2021

Belle II data sample: 62.8 fb $^{-1}$ 

| Yield  | Electron mode                     | Muon mode                         |
|--------|-----------------------------------|-----------------------------------|
| Signal | $(1.932 \pm 0.006) \times 10^{6}$ | $(1.501 \pm 0.007) \times 10^{6}$ |

(average of electron and muon channels)

$$\mathcal{B}(B \to X_c \ell \nu) = (9.75 \pm 0.03 (\text{stat}) \pm 0.47 (\text{sys}))\%$$

Leading systematics:

 $B \rightarrow X_c \ell \nu$  branching fractions + form factors



•

•

Analysis will be **extended** to measure moments of  $q^2$ 







Step #1: Subtract background

```
Estimate background normalizations by fitting M_{\chi}
```

 $q^2$  (GeV<sup>2</sup>)

Determine sets of signal prob. weights as a progression of threshold selections on  $q^2$  (or  $p_{\ell}$  for moments of  $M_X$ ) Event-wise Key-formula  $(q_{\mathrm{calib},i}^{2n})$  $\times \, \mathcal{C}_{\mathrm{cal}} \times \mathcal{C}_{\mathrm{acc}}$ First selection as example:  $\times 10^4$ Other Background Belle 1.75 Continuum Events / (1.32 GeV<sup>2</sup>) Data e channel  $q^2 > 3.0 \text{ GeV}^2$ 0.25 0.00 5 10 15 20 25

Step #1: Subtract background

Estimate background **normalizations** by fitting  $M_X$ Determine sets of signal prob. weights as a **progression of threshold selections** on  $q^2$  (or  $p_\ell$  for moments of  $M_X$ ) Event-wise **Key-formula** 





**Belle** (simulation)

10

9

8

 $\langle q_{true}^2 \rangle$  (GeV<sup>2</sup>)

7

Step #1: Subtract background Step #2: Calibrate moments Estimate background **normalizations** by fitting  $M_{\chi}$ Use simulated data to calibrate reconstructed moments Event-wise Key-formula  $\langle q^{2n} \rangle = \frac{\sum w_i(q^2)(q_{\text{calib},i}^{2n})}{\sum_i w_i(q^2)} \times \mathcal{C}_{\text{cal}} \times \mathcal{C}_{\text{acc}}$ Linear Fit  $q^2 > 5.5$  $rac{1}{2} q^2 > 8.0$ 12  $q^2 > 3.0$  $q^2 > 6.0$ q<sup>2</sup> > 8.5 <sup>2</sup> > 3.5  $q^2 > 6.5$  $q^2 > 9.0$ <sup>2</sup> > 4.0  $q^2 > 7.0$  $q^2 > 9.5$  $q^2 > 4.5$  $a^2 > 7.5$  $q^2 > 10.0$ 11  $(q^2_{reco})$  (GeV<sup>2</sup>)  $a^2 > 5.0$ 10 Linear dependence between reconstructed Invert linear and true moments as a function of  $q^2$ fitted curve 9  $q_{\text{calib},i}^2 = \left(q_{\text{reco},i}^2 - c\right)/m$ 8

**#** 12

from simulation



Step #1: Subtract background

Estimate background **normalizations** by fitting  $M_{\chi}$ 

#### Step #2: Calibrate moments

Use **simulated data** to calibrate **reconstructed** moments



Correct for residual calibration bias

Compare with expectation from simulated data





Step #1: Subtract background

Estimate background **normalizations** by fitting  $M_{\chi}$ 

#### Step #2: Calibrate moments

Use **simulated data** to calibrate **reconstructed** moments



#### Correct for residual calibration bias

#### Compare with expectation from simulated data





**#** 15

Step #1: Subtract background

Estimate background **normalizations** by fitting  $M_{\chi}$ 

#### Step #2: Calibrate moments

Use **simulated data** to calibrate **reconstructed** moments



## Belle II $\langle M_X^n \rangle$ moments

- First presented in summer 2020
- Belle II data sample: 34.6 fb<sup>-1</sup>
- Companion B meson reconstructed using the Full Event Interpretation (FEI)
- Requires one high momentum signal lepton
- Reduces background by exploiting inclusive kinematic variables
- Performs calibration as a function of: Missing energy and momentum, X system multiplicity,  $p_\ell$
- Leading systematics:  $B \rightarrow X_c \ell \nu$  composition + modelling



# Belle $\langle q^{2n} \rangle$ moments

Fresh idea from [JHEP 02, 177 (2019)] (see Keri's talk)

- First presented in spring 2021
- Complete Belle dataset: 711 fb<sup>-1</sup>
- Companion B meson reconstructed using the Full Reconstruction (FR)
- Selects leptons at detector acceptance limit:  $p_e^* > 0.3 \text{ GeV}, p_{\mu}^* > 0.5 \text{ GeV}$
- Separates electron and muon channels
- Exploits missing energy and momentum to reject backgrounds



# Hot off the press from Belle II!

Talk by W. Sutcliffe Moriond EW 2022

# 18



A leading systematic in all the discussed analyses:

| 4                              | $D(D \rightarrow \Lambda_c \ell \ \nu_\ell) \sim 10.19$ | /0                                               |                                                          |
|--------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| ${f D}^0\ell^+ u_\ell\ 2.31\%$ | ${f D^{*0}}\ell^+ u_\ell\ 5.05\%$                       | ${f D^{**0}}\ell^+ u_\ell + { m Other} \ 2.38\%$ | $\begin{array}{c} \text{Gap} \\ \sim 1.05\% \end{array}$ |

$$\mathcal{B}(\mathrm{B}^+ \to X^0_{\mathrm{c}} \ell^+ \nu_\ell) \approx 10.79 \,\%$$

A leading systematic in all the discussed analyses:

|                          | 4                                                              | $\mathcal{B}(\mathbb{R})$                        | $B^+ \to X^0_{\rm c} \ell^+ \nu_\ell) \approx$                   | * 10.79 % |                                                  |                                                          |
|--------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-----------|--------------------------------------------------|----------------------------------------------------------|
|                          | ${f D}^0\ell^+ u_\ell\ 2.31\%$                                 |                                                  | ${ m D}^{*0}\ell^+ u_\ell$ $5.05\%$                              | ]         | ${f D^{**0}}\ell^+ u_\ell + { m Other} \ 2.38\%$ | $\begin{array}{c} \text{Gap} \\ \sim 1.05\% \end{array}$ |
| Decay                    |                                                                | $\mathcal{B}(B^+)$                               | $\mathcal{B}(B^0)$                                               |           |                                                  |                                                          |
| $B \to D$<br>$B \to D^2$ | $\ell^+ \nu_{\ell}$ (2.4 ± 0<br>* $\ell^+ \nu_{\ell}$ (5.5 ± 0 | $(0.1) \times 10^{-2}$<br>$(0.1) \times 10^{-2}$ | $(2.2 \pm 0.1) \times 10^{-2}$<br>$(5.1 \pm 0.1) \times 10^{-2}$ |           | Fairly well k<br>Some iso-spin                   | nown.<br>tension.                                        |

### 

A leading systematic in all the discussed analyses:

|                                                                         | ◀                                                                                                                                        |                                                                  | $\mathcal{B}(\mathbf{F})$                                                                        | $3^+ \to X_{\rm c}^{\circ} \ell^+ \nu_{\ell})$                                                                                       | $\approx 10.79$  | /0 |                                                  |                                                         |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|----|--------------------------------------------------|---------------------------------------------------------|
|                                                                         | $D^0\ell^+$ $2.31$                                                                                                                       | $   \nu_{\ell} $ %                                               |                                                                                                  | ${ m D}^{*0}\ell^+ u_\ell$ $5.05\%$                                                                                                  |                  | D* | $^{**0}\ell^+ u_\ell + 	ext{Other} \ 2.38\%$     | $\begin{array}{c} {\rm Gap} \\ \sim 1.05\% \end{array}$ |
| Decay                                                                   |                                                                                                                                          |                                                                  | $\mathcal{B}(B^+)$                                                                               | $\mathcal{B}(B^0)$                                                                                                                   | )                |    |                                                  |                                                         |
| $\begin{array}{c} B \rightarrow D \\ B \rightarrow D^{2} \end{array}$   | $\ell^+  u_\ell \ ^* \ell^+  u_\ell$                                                                                                     | $(2.4 \pm 0)$<br>$(5.5 \pm 0)$                                   | $(.1) \times 10^{-2}$<br>$(.1) \times 10^{-2}$                                                   | $(2.2 \pm 0.1) \times 10^{-2}$<br>$(5.1 \pm 0.1) \times 10^{-2}$                                                                     | 2                |    | Fairly well ki<br>Some iso-spin                  | nown.<br>tension.                                       |
| $B \rightarrow D$ $B \rightarrow D$ $B \rightarrow D$ $B \rightarrow D$ | $egin{array}{l} 1 & \ell^+   u_\ell \ 2 & \ell^+   u_\ell \ 2 & \ell^+   u_\ell \ 2 & \ell^+   u_\ell \ 1 & \ell^+   u_\ell \end{array}$ | $(6.6 \pm 0)$<br>$(2.9 \pm 0)$<br>$(4.2 \pm 0)$<br>$(4.2 \pm 0)$ | $(.1) \times 10^{-3}$<br>$(.3) \times 10^{-3}$<br>$(.8) \times 10^{-3}$<br>$(.9) \times 10^{-3}$ | $(6.2 \pm 0.1) \times 10^{-3}$<br>$(2.7 \pm 0.3) \times 10^{-3}$<br>$(3.9 \pm 0.7) \times 10^{-3}$<br>$(3.9 \pm 0.8) \times 10^{-3}$ | 3<br>3<br>3<br>3 |    | Broad states b<br>3 measuren<br>(BaBar, Belle, I | ased on<br>nents.<br>DELPHI)                            |

#### $\mathbf{v}$ n/n+

A leading systematic in all the discussed analyses:

|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathcal{B}(\mathbf{I})$                                                                        | $B^+ \to X_{\rm c}^+ \ell^+ \nu_\ell) \approx$                                                                                           | ± 10.79% | 0                                               |                                                           |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------|-----------------------------------------------------------|
|                                                                         | ${ m D}^0 \ell^+  u_\ell \ 2.31\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  | ${ m D}^{*0}\ell^+ u_\ell$ $5.05\%$                                                                                                      |          | ${f D^{**0}}\ell^+ u_\ell + {f Other} \ 2.38\%$ | $\begin{array}{c} \text{Gap} \\ \sim 1.05 \% \end{array}$ |
| Decay<br>$B \rightarrow D$<br>$B \rightarrow D^{2}$                     | $\ell^{+} \nu_{\ell}$ (2.4 ± $^{*} \ell^{+} \nu_{\ell}$ (5.5 ± $^{*} \ell^{+} \nu_{\ell}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathcal{B}(B^+)$<br>0.1) × 10 <sup>-2</sup><br>0.1) × 10 <sup>-2</sup>                         | $\mathcal{B}(B^0)$<br>$(2.2 \pm 0.1) 	imes 10^{-2}$<br>$(5.1 \pm 0.1) 	imes 10^{-2}$                                                     |          | Fairly well k<br>Some iso-spin                  | nown.<br>tension.                                         |
| $B \rightarrow D$ $B \rightarrow D$ $B \rightarrow D$ $B \rightarrow D$ | $egin{array}{lll} &\ell^+   u_\ell & (6.6 \pm 0.25) \ &2^2  \ell^+   u_\ell & (2.9 \pm 0.25) \ &2^2  \ell^+   u_\ell & (4.2 \pm 0.25) \ &2^2  \mu^+   u_\ell & (4.2 \pm 0.25) \ &2$ | $0.1) \times 10^{-3}$<br>$0.3) \times 10^{-3}$<br>$0.8) \times 10^{-3}$<br>$0.9) \times 10^{-3}$ | $\begin{array}{c} (6.2\pm0.1)\times10^{-3}\\ (2.7\pm0.3)\times10^{-3}\\ (3.9\pm0.7)\times10^{-3}\\ (3.9\pm0.8)\times10^{-3} \end{array}$ |          | Broad states k<br>3 measuren<br>(BaBar, Belle,  | based on<br>nents.<br>DELPHI)                             |



 $(10.8 \pm 0.4) \times 10^{-2} \ (10.1 \pm 0.4) \times 10^{-2}$  $B \to X_c \ell \nu_\ell$ 

A leading systematic in all the discussed analyses:

|                                                                                                                      |                                                                  | $\mathcal{B}(\mathbb{F})$                                                                    | $B^+ \to X^0_{\rm c} \ell$                                                      | $^{+}\nu_{\ell}) \approx$                                                    | 10.79% |                                                  | >                                                        |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------|--------------------------------------------------|----------------------------------------------------------|
| $D^0$ .<br>2.3                                                                                                       | $\ell^+  u_\ell$<br>1 %                                          |                                                                                              | ${ m D}^{*0}\ell^+ u_\ell$ $5.05\%$                                             |                                                                              |        | ${f D}^{**0}\ell^+ u_\ell + { m Other} \ 2.38\%$ | $\begin{array}{c} \text{Gap} \\ \sim 1.05\% \end{array}$ |
| Decay                                                                                                                |                                                                  | $\mathcal{B}(B^+)$                                                                           |                                                                                 | $\mathcal{B}(B^0)$                                                           |        |                                                  |                                                          |
| $B \to D \ell^+ \nu_\ell \\ B \to D^* \ell^+ \nu_\ell$                                                               | $(2.4 \pm 0)$ $(5.5 \pm 0)$                                      | $(0.1) \times 10^{-2}$<br>$(0.1) \times 10^{-2}$                                             | $(2.2 \pm 0.1)$ x<br>$(5.1 \pm 0.1)$ x                                          | $\times 10^{-2} \\ \times 10^{-2}$                                           | -      | Fairly well k<br>Some iso-spin                   | nown.<br>tension.                                        |
| $B \to D_1 \ell^+ \nu_\ell$ $B \to D_2^* \ell^+ \nu_\ell$ $B \to D_0^* \ell^+ \nu_\ell$ $B \to D_1' \ell^+ \nu_\ell$ | $(6.6 \pm 0)$<br>$(2.9 \pm 0)$<br>$(4.2 \pm 0)$<br>$(4.2 \pm 0)$ | $(1) \times 10^{-3}$<br>$(3) \times 10^{-3}$<br>$(8) \times 10^{-3}$<br>$(9) \times 10^{-3}$ | $(6.2 \pm 0.1)$ $(2.7 \pm 0.3)$ $(3.9 \pm 0.7)$ $(3.9 \pm 0.8)$ $(2.7 \pm 0.8)$ | $\times 10^{-3}$<br>$\times 10^{-3}$<br>$\times 10^{-3}$<br>$\times 10^{-3}$ |        | Broad states k<br>3 measuren<br>(BaBar, Belle,   | based on<br>nents.<br>DELPHI)                            |
| $B \to D\pi\pi \ell^+ \nu_\ell$ $B \to D^*\pi\pi \ell^+ \nu_\ell$                                                    | $(0.6 \pm 0)$<br>$(2.2 \pm 1)$                                   | $(.9) \times 10^{-3}$<br>$(.0) \times 10^{-3}$                                               | $(0.6 \pm 0.9) \times$<br>$(2.0 \pm 1.0) \times$                                | $\times 10^{-3} \times 10^{-3}$                                              |        | Some hints<br>the BaBar r                        | from<br>result.                                          |
| $B \to X_c \ell \nu_\ell$                                                                                            | $(10.8 \pm 0)$                                                   | (4) $\times 10^{-2}$                                                                         | $(10.1 \pm 0.4)$ >                                                              | $\times 10^{-2}$                                                             |        |                                                  |                                                          |

# A tale of two 'gap' models





# A tale of two 'gap' models

Model 1:



| cay                                         | $\mathcal{B}(B^+)$             | $\mathcal{B}(B^0)$             |
|---------------------------------------------|--------------------------------|--------------------------------|
| $\rightarrow D \ell^+ \nu_\ell$             | $(2.4 \pm 0.1) \times 10^{-2}$ | $(2.2 \pm 0.1) \times 10^{-2}$ |
| $\rightarrow D^*  \ell^+  \nu_\ell$         | $(5.5 \pm 0.1) \times 10^{-2}$ | $(5.1 \pm 0.1) \times 10^{-2}$ |
| $ ightarrow D_1  \ell^+   u_\ell$           | $(6.6 \pm 0.1) \times 10^{-3}$ | $(6.2 \pm 0.1) \times 10^{-3}$ |
| $\rightarrow D_2^*  \ell^+   u_\ell$        | $(2.9 \pm 0.3) \times 10^{-3}$ | $(2.7 \pm 0.3) \times 10^{-3}$ |
| $\rightarrow D_0^*  \ell^+   u_\ell$        | $(4.2 \pm 0.8) \times 10^{-3}$ | $(3.9 \pm 0.7) \times 10^{-3}$ |
| $\rightarrow D_1'  \ell^+  \nu_\ell$        | $(4.2 \pm 0.9) \times 10^{-3}$ | $(3.9 \pm 0.8) \times 10^{-3}$ |
| $\rightarrow D\pi\pi\ell^+\nu_\ell$         | $(0.6 \pm 0.9) \times 10^{-3}$ | $(0.6 \pm 0.9) \times 10^{-3}$ |
| $\rightarrow D^* \pi \pi  \ell^+  \nu_\ell$ | $(2.2 \pm 1.0) \times 10^{-3}$ | $(2.0 \pm 1.0) \times 10^{-3}$ |
| $\rightarrow D\eta  \ell^+  \nu_\ell$       | $(4.0 \pm 4.0) \times 10^{-3}$ | $(4.0 \pm 4.0) \times 10^{-3}$ |
| $ ightarrow D^*\eta\ell^+ u_\ell$           | $(4.0 \pm 4.0) \times 10^{-3}$ | $(4.0 \pm 4.0) \times 10^{-3}$ |

**Model 2**: ecay via intermediate broad  $D^{**}$  state

| Decay                                   | $\mathcal{B}(B^+)$                 | $\mathcal{B}(B^0)$                 |
|-----------------------------------------|------------------------------------|------------------------------------|
| $B \to D_0^* \ell^+ \nu_\ell$           | $(0.03 \pm 0.03) \times 10^{-2}$   | $(0.03 \pm 0.03) \times 10^{-2}$   |
| $(\hookrightarrow D\pi\pi)$             |                                    |                                    |
| $B \to D_1^* \ell^+ \nu_\ell$           | $(0.03 \pm 0.03) \times 10^{-2}$   | $(0.03 \pm 0.03) \times 10^{-2}$   |
| $(\hookrightarrow D\pi\pi)$             |                                    |                                    |
| $B \to D_0^* \pi \pi \ell^+ \nu_\ell$   | $(0.108 \pm 0.051) \times 10^{-2}$ | $(0.101 \pm 0.048) \times 10^{-2}$ |
| $(\hookrightarrow D^*\pi\pi)$           | 2                                  | 0                                  |
| $B \to D_1^* \pi \pi  \ell^+  \nu_\ell$ | $(0.108 \pm 0.051) \times 10^{-2}$ | $(0.101 \pm 0.048) \times 10^{-2}$ |
| $(\hookrightarrow D^*\pi\pi)$           | (0.000, 0.000) 10-2                | (0.000 + 0.000) + 0-2              |
| $B \to D_0^* \ell^+ \nu_\ell$           | $(0.396 \pm 0.396) \times 10^{-2}$ | $(0.399 \pm 0.399) \times 10^{-2}$ |
| $(\hookrightarrow D\eta)$               | $(0.900 + 0.900) = 10^{-2}$        | $(0.000 + 0.000) = 10^{-2}$        |
| $B \to D_1^* \ell^+ \nu_\ell$           | $(0.396 \pm 0.396) \times 10^{-2}$ | $(0.399 \pm 0.399) \times 10^{-2}$ |
| $(\hookrightarrow D^{*}\eta)$           |                                    |                                    |

(Assign 100% BR uncertainty in systematics covariance matrix)

# A tale of two 'gap' models



| ecay                                                                                                                                                                                            | $\mathcal{B}(B^+)$                                                                                                          | $\mathcal{B}(B^0)$                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \rightarrow D \ell^+ \nu_\ell  \rightarrow D^* \ell^+ \nu_\ell $                                                                                                                              | $(2.4 \pm 0.1) \times 10^{-2}$<br>$(5.5 \pm 0.1) \times 10^{-2}$                                                            | $(2.2 \pm 0.1) \times 10^{-2}$<br>$(5.1 \pm 0.1) \times 10^{-2}$                                                                                            |
| $ \begin{array}{l} \rightarrow D_1 \ \ell^+ \ \nu_\ell \\ \rightarrow D_2^* \ \ell^+ \ \nu_\ell \\ \rightarrow D_0^* \ \ell^+ \ \nu_\ell \\ \rightarrow D_1^* \ \ell^+ \ \nu_\ell \end{array} $ | $(6.6 \pm 0.1) \times 10^{-3}$ $(2.9 \pm 0.3) \times 10^{-3}$ $(4.2 \pm 0.8) \times 10^{-3}$ $(4.2 \pm 0.9) \times 10^{-3}$ | $\begin{array}{c} (6.2\pm0.1)\times10^{-3}\\ (2.7\pm0.3)\times10^{-3}\\ (3.9\pm0.7)\times10^{-3}\\ (3.9\pm0.8)\times10^{-3} \end{array}$                    |
| $ D\pi\pi \ell^{+} \nu_{\ell}   D^{*}\pi\pi \ell^{+} \nu_{\ell}   D\eta \ell^{+} \nu_{\ell}   D\eta \ell^{+} \nu_{\ell}   D^{*}\eta \ell^{+} \nu_{\ell} $                                       | $(0.6 \pm 0.9) \times 10^{-3}$ $(2.2 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 4.0) \times 10^{-3}$ $(4.0 \pm 4.0) \times 10^{-3}$ | $\begin{array}{c} (0.6 \pm 0.9) \times 10^{-3} \\ (2.0 \pm 1.0) \times 10^{-3} \\ (4.0 \pm 4.0) \times 10^{-3} \\ (4.0 \pm 4.0) \times 10^{-3} \end{array}$ |

**Model 2**: Decay via intermediate broad  $D^{**}$  state

| Decay                                   | $\mathcal{B}(B^+)$                 | $\mathcal{B}(B^0)$                 |  |  |  |  |
|-----------------------------------------|------------------------------------|------------------------------------|--|--|--|--|
| $B \to D_0^* \ell^+ \nu_\ell$           | $(0.03 \pm 0.03) \times 10^{-2}$   | $(0.03 \pm 0.03) \times 10^{-2}$   |  |  |  |  |
| $(\hookrightarrow D\pi\pi)$             |                                    |                                    |  |  |  |  |
| $B \to D_1^* \ell^+ \nu_\ell$           | $(0.03 \pm 0.03) \times 10^{-2}$   | $(0.03 \pm 0.03) \times 10^{-2}$   |  |  |  |  |
| $(\hookrightarrow D\pi\pi)$             |                                    |                                    |  |  |  |  |
| $B \to D_0^* \pi \pi \ell^+ \nu_\ell$   | $(0.108 \pm 0.051) \times 10^{-2}$ | $(0.101 \pm 0.048) \times 10^{-2}$ |  |  |  |  |
| $(\hookrightarrow D^*\pi\pi)$           |                                    |                                    |  |  |  |  |
| $B \to D_1^* \pi \pi  \ell^+  \nu_\ell$ | $(0.108 \pm 0.051) \times 10^{-2}$ | $(0.101 \pm 0.048) \times 10^{-2}$ |  |  |  |  |
| $(\hookrightarrow D^*\pi\pi)$           | 0                                  |                                    |  |  |  |  |
| $B \to D_0^* \ell^+ \nu_\ell$           | $(0.396 \pm 0.396) \times 10^{-2}$ | $(0.399 \pm 0.399) \times 10^{-2}$ |  |  |  |  |
| $(\hookrightarrow D\eta)$               |                                    |                                    |  |  |  |  |
| $B \to D_1^*  \ell^+  \nu_\ell$         | $(0.396 \pm 0.396) \times 10^{-2}$ | $(0.399 \pm 0.399) \times 10^{-2}$ |  |  |  |  |
| $(\hookrightarrow D^*\eta)$             |                                    |                                    |  |  |  |  |

(Assign 100% BR uncertainty in systematics covariance matrix)





- ? Beyond the Standard Model physics scenario
- ? Wrong assumptions  $\rightarrow$  But why no discrepancy in other parameters?
- Further studies are needed
- $e/\mu$  flavours should be studied separately



- ? Wrong assumptions  $\rightarrow$  But why no discrepancy in other parameters?
- Further studies are needed
- $e/\mu$  flavours should be studied separately



Measure  $A_{FB}$  from inclusive  $B \rightarrow X_c \ell \nu$  decays for an **orthogonal**, **complementary study**, while also gaining **additional information** on HQE parameters. [JHEP 04 (2016) 131]







$$\mathcal{A}_{FB} = \frac{1}{\Gamma} \left( \int_{-1}^{0} \mathrm{d}z \frac{\mathrm{d}\Gamma}{\mathrm{d}z} - \int_{0}^{1} \mathrm{d}z \frac{\mathrm{d}\Gamma}{\mathrm{d}z} \right)$$











JHEP 04 (2016) 131

 $E_{\rm cut} = 0 \, {\rm GeV}$ 0.7 • Goal: Measure  $A_{FB}$  from inclusive  $B \to X_c \ell \nu$  $z = \cos \theta_{\ell}$ 0.6 decays using hadronic tagging 0.5  $d\Gamma$  0.4 Black:  $1/m_b^0$  $d\cos\theta = 0.3 \frac{1}{b}$  Green :  $1/m_b^2$  $\mathcal{A}_{FB} = \frac{1}{\Gamma} \left( \int_{-1}^{0} \mathrm{d}z \frac{\mathrm{d}\Gamma}{\mathrm{d}z} - \int_{0}^{1} \mathrm{d}z \frac{\mathrm{d}\Gamma}{\mathrm{d}z} \right) \Big|$ 0.2 Red [Dashed ]:  $1/m_b^3$ Orange [Longdashed ]:  $1/m_b^4$ 0.1 Blue [Dotted ]:  $1/m_b^5$ 0.0<sup>上</sup> −1.0 -0.5 0.0 0.5 1.0  $\cos\theta$ **Reconstruct:**  $z = \frac{E_{\nu_{\ell}}^{D} - E_{\ell}^{D}}{\sqrt{(E_{\nu_{\ell}}^{B} + E_{\ell}^{B})^{2} - q^{2}}}$ D\*0  $\pi$ • Missing energy and  $q^2$  easily accessible variables  $\theta_{\ell}$ with tagged approach • Separate electron and muon channels for further **LFU** tests Additional information leads to greater sensitivity in global fits, particularly the HQE parameter  $\hat{\mu}_{G}$ 



 A minimum energy is required for leptons to be successfully reconstructed & identified by the Belle II detector



- A minimum energy is required for leptons to be successfully reconstructed & identified by the Belle II detector
- Higher  $E_{\ell}$  selects a less inclusive sample



- A minimum energy is required for leptons to be successfully reconstructed & identified by the Belle II detector
- Higher  $E_{\mathcal{C}}$  selects a less inclusive sample
- Imposing an  $E_{\ell}$  requirement introduces a kink, which would smooth out due to detector resolution



- A minimum energy is required for leptons to be successfully reconstructed & identified by the Belle II detector
- Higher  $E_{\ell}$  selects a less inclusive sample
- Imposing an  $E_{\ell}$  requirement introduces a kink, which would smooth out due to detector resolution
- Potential challenges in **unfolding** reconstructed to the underlying distribution?

Publication in preparation



- A minimum energy is required for leptons to be successfully reconstructed & identified by the Belle II detector
- Higher  $E_{\mathcal{C}}$  selects a less inclusive sample
- Imposing an  $E_{\ell}$  requirement introduces a kink, which would smooth out due to detector resolution
- Potential challenges in unfolding reconstructed to the underlying distribution?





Publication in preparation



- A minimum energy is required for leptons to be successfully reconstructed & identified by the Belle II detector
- Higher  $E_{\ell}$  selects a less inclusive sample
- Imposing an  $E_{\ell}$  requirement introduces a kink, which would smooth out due to detector resolution
- Potential challenges in unfolding reconstructed to the underlying distribution?





### **Conclusion & Outlook:**

- Measurements generally used in  $b \rightarrow c$  analyses are old and should be **systematically revisited** with Belle II and LHCb.
- Several **new results** on inclusive  $B \to X_c \ell \nu$  decays at the B-factories:  $\mathcal{B}$ , moments of  $\langle q^{2n} \rangle$  and  $\langle M_X^n \rangle$ ...
- Modelling and composition of  $B \rightarrow X_c \ell \nu$  decays are **leading systematics**. Steadily increasing dataset of Belle II will **improve our understanding** of the non-resonant contribution.
- New observables that could better constrain the OPE should be investigated. Analysis aiming to measure  $A_{FB}$  already underway with help from theory friends! (...you?)

### **Reconstruction at B-Factories**



# Determining incl. V<sub>cb</sub>



Established approach: Use hadronic mass moments, lepton energy moments etc.

$$\Gamma(B \to X_c \ell \nu_\ell) \quad \langle M_X^n \rangle \quad \langle E_\ell^n \rangle$$

to determine non-perturbative matrix elements (ME) of HQE and extract |V<sub>cb</sub>|

$$\mathcal{B} = |V_{qb}|^2 \left[ \Gamma(b \to q \,\ell \,\bar{\nu}_\ell) + 1/m_{c,b} + \alpha_s + \dots \right]$$

STOP The number ME increases if one increases expansion in orders of  $1/m_{b,c}$ 

Novel theoretical approach introduced in [JHEP 02, 177 (2019)]

→ Exploits reparametrization invariance to reduce the # of ME, but not true for every observable (e.g. not for  $\langle M_X \rangle$ )

**Holds** for  $\langle q^2 \rangle$  and at  $1/m_b^4$  the # of ME reduces from **13**  $\rightarrow$  **8(!)** 

Complementary and fully data-driven approach!

**Goal**: Measure  $\langle q^{2n} \rangle$  (*n* = 1 - 4) as a progression of cuts on  $q^2$  with Belle & Belle II

# Belle $\langle q^{2n} \rangle$ moments syst.

| $q^2$ selection in GeV <sup>2</sup>            | 3.0       | 3.5    | 4.0     | 4.5     | 5.0     | 5.5     | 6.0     | 6.5     | 7.0     | 7.5     | 8.0     | 8.5     | 9.0     | 9.5      | 10.0     |
|------------------------------------------------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
| $\langle q^2 \rangle$ in GeV <sup>2</sup>      | 6.25      | 6.54   | 6.83    | 7.13    | 7.42    | 7.72    | 8.02    | 8.32    | 8.61    | 8.91    | 9.21    | 9.51    | 9.80    | 10.09    | 10.40    |
| Stat. error (data)                             | 1.51      | 1.45   | 1.39    | 1.34    | 1.30    | 1.27    | 1.24    | 1.22    | 1.21    | 1.20    | 1.20    | 1.22    | 1.23    | 1.26     | 1.29     |
| Bkg. subtraction                               | 1.34      | 1.12   | 0.90    | 0.71    | 0.59    | 0.53    | 0.49    | 0.49    | 0.57    | 0.63    | 0.65    | 0.70    | 0.76    | 0.77     | 0.82     |
| $B \to X_u \ell \nu \text{ BF}$                | 2.18      | 2.04   | 1.75    | 1.48    | 1.35    | 1.04    | 0.76    | 0.54    | 0.38    | 0.29    | 0.19    | 0.16    | 0.12    | 0.05     | 0.05     |
| $B \to X_c \ell \nu$ BF                        | 4.82      | 5.02   | 5.14    | 5.14    | 5.05    | 5.00    | 4.67    | 4.05    | 3.51    | 3.11    | 2.66    | 2.21    | 1.75    | 1.36     | 1.16     |
| Non-resonant model                             | 14.25     | 12.72  | 11.04   | 9.28    | 7.83    | 6.62    | 5.42    | 4.00    | 3.02    | 2.28    | 1.65    | 1.43    | 1.04    | 0.86     | 0.78     |
| $B \to X_c \ell \nu$ FF                        | 1.43      | 1.30   | 1.16    | 1.03    | 0.91    | 0.85    | 0.82    | 0.74    | 0.69    | 0.62    | 0.54    | 0.48    | 0.42    | 0.39     | 0.35     |
| $N_{ m tracks}$ res.                           | 5.66      | 5.31   | 4.96    | 4.65    | 4.36    | 4.06    | 3.78    | 3.52    | 3.29    | 3.06    | 2.85    | 2.66    | 2.51    | 2.38     | 2.20     |
| $N_{\gamma}$ res.                              | 0.39      | 0.38   | 0.34    | 0.31    | 0.30    | 0.28    | 0.30    | 0.31    | 0.32    | 0.28    | 0.27    | 0.26    | 0.25    | 0.27     | 0.29     |
| $E_{\rm miss} -  \mathbf{p}_{\rm miss} $ shape | 1.29      | 1.26   | 1.21    | 1.17    | 1.15    | 1.11    | 1.04    | 1.05    | 1.06    | 1.09    | 1.16    | 1.20    | 1.30    | 1.33     | 1.29     |
| $q^2$ scale                                    | 9.48      | 7.15   | 6.65    | 6.65    | 6.12    | 5.91    | 5.83    | 5.48    | 5.26    | 4.69    | 4.27    | 4.42    | 3.91    | 3.94     | 4.38     |
| MC non-closure                                 | 0.19      | 0.11   | 0.12    | 0.11    | 0.11    | 0.05    | 0.05    | 0.06    | 0.08    | 0.07    | 0.11    | 0.04    | 0.04    | 0.06     | 0.02     |
| Cal. function                                  | 0.13      | 0.08   | 0.03    | 0.02    | 0.07    | 0.12    | 0.17    | 0.22    | 0.26    | 0.31    | 0.35    | 0.39    | 0.43    | 0.47     | 0.51     |
| Stat. bias corr.                               | 1.32      | 1.27   | 1.23    | 1.19    | 1.16    | 1.13    | 1.10    | 1.08    | 1.07    | 1.06    | 1.06    | 1.06    | 1.07    | 1.09     | 1.11     |
| PID eff.                                       | 0.16      | 0.14   | 0.14    | 0.13    | 0.13    | 0.12    | 0.11    | 0.10    | 0.10    | 0.10    | 0.09    | 0.08    | 0.08    | 0.07     | 0.06     |
| Track eff.                                     | 0.44      | 0.42   | 0.39    | 0.36    | 0.34    | 0.31    | 0.29    | 0.27    | 0.25    | 0.23    | 0.21    | 0.20    | 0.18    | 0.17     | 0.15     |
| $B^0/B^{\pm}$ tag eff.                         | 0.46      | 0.58   | 0.50    | 0.44    | 0.51    | 0.40    | 0.28    | 0.34    | 0.36    | 0.38    | 0.29    | 0.23    | 0.20    | 0.12     | 0.47     |
| Sys. error (total)                             | 18.99     | 16.65  | 15.03   | 13.62   | 12.22   | 11.19   | 10.17   | 8.86    | 7.97    | 7.06    | 6.30    | 6.09    | 5.44    | 5.27     | 5.50     |
| Total rel. error in ‰                          | 19.05     | 16.71  | 15.09   | 13.68   | 12.29   | 11.26   | 10.25   | 8.94    | 8.06    | 7.16    | 6.41    | 6.21    | 5.58    | 5.42     | 5.65     |
| $\langle q^8 \rangle$ in GeV <sup>8</sup>      | 2717.22 2 | 963.88 | 3248.31 | 3578.45 | 3947.44 | 4384.73 | 4878.23 | 5458.95 | 6072.92 | 6780.95 | 7616.67 | 8497.60 | 9466.03 | 10603.31 | 11917.23 |
| Stat. error (data)                             | 10.35     | 10.07  | 9.78    | 9.47    | 9.19    | 8.89    | 8.63    | 8.36    | 8.19    | 8.05    | 7.94    | 7.91    | 7.94    | 7.95     | 7.99     |
| Bkg. subtraction                               | 5.57      | 5.25   | 4.98    | 4.80    | 4.99    | 5.23    | 5.02    | 5.06    | 5.51    | 5.71    | 5.58    | 6.00    | 5.96    | 5.81     | 6.02     |
| $B \to X_u \ell \nu$ BF                        | 11.94     | 11.10  | 9.61    | 7.82    | 7.00    | 5.31    | 3.66    | 2.53    | 1.76    | 1.30    | 0.79    | 0.69    | 0.59    | 0.20     | 0.16     |
| $B \to X_c \ell \nu \text{ BF}$                | 21.51     | 22.91  | 23.24   | 23.14   | 22.84   | 22.14   | 20.76   | 18.50   | 16.31   | 14.53   | 12.43   | 10.40   | 8.44    | 6.74     | 5.74     |
| Non-resonant model                             | 49.93     | 45.52  | 40.56   | 35.22   | 30.45   | 26.13   | 21.80   | 16.75   | 13.12   | 10.26   | 7.73    | 6.66    | 5.10    | 4.25     | 3.79     |
| $B \to X_c \ell \nu$ FF                        | 4.91      | 4.76   | 4.60    | 4.40    | 4.23    | 4.12    | 4.03    | 3.75    | 3.52    | 3.23    | 2.88    | 2.59    | 2.31    | 2.09     | 1.89     |
| $N_{ m tracks}$ res.                           | 29.72     | 28.51  | 27.15   | 25.82   | 24.47   | 22.99   | 21.54   | 20.09   | 18.76   | 17.40   | 16.09   | 14.89   | 13.83   | 12.86    | 11.73    |
| $N_{\gamma}$ res.                              | 2.95      | 2.89   | 2.75    | 2.62    | 2.58    | 2.46    | 2.46    | 2.44    | 2.39    | 2.22    | 2.16    | 2.07    | 2.00    | 2.01     | 2.06     |
| $E_{\rm miss} -  \mathbf{p}_{\rm miss} $ shape | 10.18     | 9.83   | 9.42    | 9.05    | 8.69    | 8.33    | 7.89    | 7.70    | 7.50    | 7.35    | 7.33    | 7.21    | 7.26    | 7.11     | 6.66     |
| $q^2$ scale                                    | 46.61     | 41.26  | 39.53   | 39.00   | 36.70   | 35.23   | 33.82   | 32.22   | 30.11   | 27.83   | 25.47   | 25.28   | 23.04   | 24.16    | 25.90    |
| MC non-closure                                 | 0.00      | 0.00   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     |
| Cal. function                                  | 0.63      | 0.34   | 0.04    | 0.26    | 0.55    | 0.86    | 1.14    | 1.42    | 1.68    | 1.92    | 2.17    | 2.37    | 2.56    | 2.74     | 2.90     |
| Stat. bias corr.                               | 8.21      | 8.00   | 7.79    | 7.59    | 7.38    | 7.18    | 6.99    | 6.83    | 6.67    | 6.54    | 6.43    | 6.35    | 6.29    | 6.27     | 6.27     |
| PID eff.                                       | 0.81      | 0.77   | 0.74    | 0.70    | 0.69    | 0.64    | 0.60    | 0.56    | 0.52    | 0.51    | 0.47    | 0.42    | 0.40    | 0.35     | 0.30     |
| Track eff.                                     | 2.25      | 2.16   | 2.05    | 1.95    | 1.84    | 1.72    | 1.60    | 1.49    | 1.38    | 1.27    | 1.16    | 1.06    | 0.98    | 0.89     | 0.81     |
| $B^0/B^{\pm}$ tag eff.                         | 0.97      | 1.19   | 0.98    | 0.80    | 0.94    | 0.58    | 0.18    | 0.29    | 0.30    | 0.26    | 0.14    | 0.42    | 0.59    | 1.79     | 3.06     |
| Sys. error (total)                             | 79.98     | 73.90  | 69.18   | 64.95   | 60.23   | 56.09   | 51.86   | 47.19   | 43.06   | 39.32   | 35.61   | 34.06   | 31.06   | 30.93    | 31.65    |
| Total rel. error in ‰                          | 80.64     | 74.58  | 69.87   | 65.64   | 60.93   | 56.79   | 52.58   | 47.93   | 43.83   | 40.13   | 36.48   | 34.97   | 32.06   | 31.93    | 32.64    |
|                                                |           |        |         |         |         |         |         |         |         |         |         |         |         |          |          |

### $E_{\ell}$ vs. $q^2$ selection criteria

[JHEP 02, 177 (2019)]

