

Electroweak penguins and radiative decays at Belle II

for the

56th Rencontres de Moriond 2022, Electroweak Interactions & Unified Theories March 12th-18th, 2022

Elisa Manoni (Istituto Nazionale di Fisica Nucleare, Sezione di Perugia)

collaboration

Electroweak and radiative penguins

 B^0

- b→s transition: Flavour Changing Neutral Current prohibited @ tree level in the standard model (SM):
 - 10⁻⁷ 10⁻⁵ predicted BF, with 10-30% uncertainties (dominated by soft QCD effects)
 - more accurate precisions for angular observables, asymmetries and ratios

```
New Physics (NP) can enter as:
```

- new mediators in loop and box or new tree level diagrams
- new sources of missing energy (e.g. in $b \rightarrow sv\overline{v}$)
- Can modify rates, asymmetries, angular distributions \rightarrow variety of interesting channels and measurable

- W^{-} b s

m

u,*c*,*t*

Bellell (a) SuperKeKB (I)

- SuperKeKB and Belle II detector already described by previous Belle II speakers
- From Apr 2019 to Dec 2021:
 - 268 fb⁻¹ "on-resonance data" collected at the Y(4S) mass
 - 18 fb⁻¹ "off-resonance" data collected 60 MeV below

Will show today results with 63 fb⁻¹ or 190 fb⁻¹

K_L and muon detector (KLM):

Resistive Plate Counters (RPC) (outer barrel) Scintillator + WLSF + MPPC (endcaps, inner barrel)

Magnet: 1.5 T superconducting

Trigger:

Hardware: < 30 kHz Software: < 10 kHz

Particle Identification (PID):

Time-Of-Propagation counter (TOP) (barrel) Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

> DEPFET: depleted p-channel field-effect transistor WLSF: wavelength-shifting fiber MPPC: multi-pixel photon counter

Bellell (a) SuperKeKB (II)

• A glance to Belle II performances relevant to analysis presented in this talk:

Good Lepton ID, Muon/ Electron-ID over/under performing wrt Belle, improvements in progress

High photon detection

Good kaon identification,

LFU violation in $b \rightarrow s \ell \ell$ final states and Belle II contribution

State of the art: 3.1 σ evidence for LFU violation by LHCD

- Belle II, which enjoys nearly symmetric electron/muon reconstruction performance, can:
 - provide independent check of R(K(*)) anomalies with > 5-10 ab⁻¹
 - measure $R(X_s)$
 - provide independent measurement of absolute BF for e and μ (e.g. constraint on C9 Wilson coefficient, separately for the two modes)
- 2021 preliminary result on for $B^+ \rightarrow K^+ \ell^+ \ell^-$ with 63 fb⁻¹ of Belle II data: 2.7 σ significance for signal

$B \rightarrow K^* \ell \ell$ branching fraction (I)

- Belle II search for $B \rightarrow K^* \ell^+ \ell^-$ ($\ell = e, \mu$) with 189.26 fb⁻¹
- Fully reconstructed mode, $K^* \rightarrow K^+\pi^-$, $K^+\pi^0$, $K_s\pi^+ + 2$ same-flavour leptons: ~2%-14% reconstruction efficiency depending on the mode
- Background suppression:

Elisa Manoni - INFN PG

- veto on $\ell \ell$ invariant mass to suppress J/ψ , $\psi(2S) \rightarrow \ell \ell \ell$
- BDT with kinematic and event shape variables to suppress \bullet mis-reconstructed events from **BB** and **qq**
- ad-hoc cuts to suppress **background peaking in Mbc** , e.g.

B+ →
$$\overline{D}^{\circ}$$
 (K+ π^oπ⁻) π⁺
fake K^{*}^o both pions

mis-identified as muons

03/17/2022

$B \rightarrow K^* \ell \ell$ branching fraction (II)

- $B \rightarrow J/\psi(\ell \ell) K^*$ used as control sample
 - computation of fit parameters for signal PDF
 - efficiency correction factor for residual data/MC disagreement after all selection cuts and data/MC corrections related to particle reconstruction performances are applied

• Systematic uncertainties: dominant contributions from data/simulation mis-modelling of particle identification and from B-counting (BF normalisation)

INFN

$B \rightarrow K^* \ell \ell$ branching fraction (III)

• Signal yield extracted from 2D fit to M_{bc} and ΔE

Branching fraction in entire q² range excluding J/ ψ and ψ (2S) resonances:

$$\begin{aligned} \mathcal{B}(B \to K^* \mu \mu) &= (1.19 \pm 0.31 \pm^{+0.08}_{-0.07}) \times 10^{-6}, \\ \mathcal{B}(B \to K^* ee) &= (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}, \\ \mathcal{B}(B \to K^* \ell \ell) &= (1.25 \pm 0.30 \pm^{+0.08}_{-0.07}) \times 10^{-6}, \end{aligned}$$

- $(1.19 \pm 0.20) \times 10^{-6}$
- $(1.05 \pm 0.10) \times 10^{-6}$

Elisa Manoni - INFN PG

- PDG averages
- $(1.06 \pm 0.09) \times 10^{-6}$
- Precision for electron and muon channels in the same ballpark
- Limited by sample size lacksquare
- Electron channel "only" 2.5 σ worst wrt PDG, expected to became competitive with 1 ab⁻¹
- Will provide essential independent check of anomalies with few 1/ab

Radiative $b \rightarrow s$ transitions

- $b \rightarrow s\gamma$ has higher rates wrt $b \rightarrow s\ell\ell$, variety of reconstruction techniques feasible at Belle II \rightarrow optimally suited/unique for Belle II
- State of the art on $B \rightarrow K^* \gamma$ and $B \rightarrow X_s \gamma$, best measurements from Belle
- Reconstruction strategies:
 - $B \rightarrow K^* \gamma$

- Full reconstruction of only 1 B in the event
- Reconstruction and selection efficiency \sim 2-15% depending on K^{*} mode

[1] Phys. Rev. D 99, 032012 (2019), 711 fb⁻¹, [2] Phys.Rev.D 91 (2015) 5, 052004, 711 fb⁻¹, [3] Phys. Rev. Lett. 119, 191802 (2017), 711 fb⁻¹ $B \rightarrow K^* \gamma$ $B \rightarrow X s \gamma$ **BF** precision 10% **[2]** 3% **[3**] consistent with zero and SM predictions [1], [3] Acp first evidence for isospin consistent with zero [1] **⊿₀**violation @ 3.1 σ [3]

• Inclusive signal side reconstruction, require 1 high energy photon • Different strategies for other-B reconstruction:

 $B \rightarrow X_s \gamma$

Fully inclusive, no tagging	Lepton tagging	Semileptonic tagging	Hadronic tagging
$B \rightarrow anything$	$B \to l X$	$B \to \bar{D}^{(*)} l \nu n \pi$	$B ightarrow { m hadrons}$, e.g. $B ightarrow$

Tagging efficiencies, achievable signal yields

Purities of the tagged samples

$B \rightarrow K^* \gamma$ branching fraction

- $B \rightarrow K^* \gamma$ branching fraction measurement, with 63 fb-1
- Signal yield extracted from unbinned maximum likelihood fit to ΔE
- Measured branching fractions:

Mode	$\mathcal{B}_{\text{meas}}$ [10 ⁻⁵]
$B^0 \to K^{*0} [K^+ \pi^-] \gamma$	$\left 4.5\pm0.3\pm0.2 ight $
$B^0 \to K^{*0} [K^0_{\rm S} \pi^0] \gamma$	$\left 4.4\pm0.9\pm0.6 ight $
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	$\left 5.0\pm0.5\pm0.4 ight $
$B^+ \to K^{*+} [K^0_{\rm S} \pi^+] \gamma$	$5.4\pm0.6\pm0.4$

- asymmetry

• Main systematic contributions from fit modelling, mis-modelling of π^{o}/η veto and selection variables in simulation (depending on the mode)

• Analysis update with available dataset ongoing to measure BF and isospin

 π°/η faking signal γ)

$B \rightarrow X_{s\gamma}$ photon spectrum with fully untagged method

- $B \rightarrow X_s \gamma$ with untagged method, with 63 fb⁻¹
- Reconstruct only high energy γ from signal side,
- Signal photon spectrum obtained by subtracting expected background from data
 - BB estimated from simulation
 - qq from off-resonance data
- Excess visible in the expected signal region
- Update of the measurements with inclusive (improved method), hadronic and semileptonic tag ongoing, BF first and asymmetries later on

$B^+ \rightarrow K^+ \upsilon \overline{\upsilon} \operatorname{search}(I) \underset{\text{Phys.Rev.Lett. 127 (2021) 18, 181802}}{\operatorname{Phys.Rev.Lett. 127 (2021) 18, 181802}}$

- Connected to flavour anomalies, one of the missing energy modes unique to Belle II
- SM expectation: $(4.6 \pm 0.5) \times 10^{-6}$ (A. J. Buras et al., High Energy Phys. 02, 184 (2015))
- Key ingredient in BaBar and Belle searches: hadronic and semileptonic tag side reconstruction, tag efficiency at per-cent/per-mille
- Novel <u>inclusive</u> approach on <u>63 fb-1</u> of Belle II data:
- Signal kaon = highest p⊤ track
- Associate all other tracks and clusters to other B in the event
- Use multivariate approach (2 BDTs in cascade) based on kinematics, event shape and vertexing variables to suppress background
- Signal efficiency ~ 4.3 % (SM signal)

$B^+ \rightarrow K^+ \upsilon \overline{\upsilon}$ search (II)

- Extract signal from simultaneous maximum likelihood fit to on-resonance + off- resonance data in bins of $p_T(K^+)$ and second BDT
- Results:
 - signal strength: $\mu = 4.2^{+2.9}_{-2.8} \pm ^{+1.8}_{-1.6}$
 - Upper Limit @ 90% CL: $\mathscr{B}(B \to K \nu \bar{\nu}) < 4.1 \times 10^{-5}$
 - corresponding BF: $\mathscr{B}(B \to K \nu \bar{\nu}) = (1.9^{+1.6}_{-1.5}) \times 10^{-5}$
- Comparing theory and experiments:
 - Inclusive method offers 20% 350%sensitivity improvement over previous approaches

- Signal strength consistent with SM exp (μ =1) at 1 σ and with background-only hypothesis at 1.3 σ
- Leading systematics: background normalisation uncertainty, room for improvement

Conclusions

- b→s transitions are powerful probes for physics beyond SM
- Belle II is accumulating high quality data
 - healthy complementarity with LHCb on LFU violation in $b \rightarrow s\ell\ell$ modes, can perform independent BF measurement for $K^{(*)}$ ee and $K^{(*)}\mu\mu$ final states with similar performances
 - unique environment to study radiative decays and missing energy modes
- Measurements with 63fb⁻¹ and 19ofb⁻¹ have been shown
 - $B \rightarrow K^* \ell \ell$ branching fraction measurement new for Moriond22
 - Inclusive and exclusive measurements on $b \rightarrow s\gamma$ decays
 - $B^+ \rightarrow K^+ vv$ inclusive measurement in the same ballpark wrt Belle and BaBar ones with ~1/10 Belle statistics

Extra stides

Luminosity plans (I)

Path to the future

Steep path to higher luminosity

- A. Machine performance and stability
 - Beam blow up due to beam-beam effects
 - Lower than expected beam lifetime
 - Transverse mode coupling instabilities
 - Low machine stability
 - Injector capability
 - Aging infrastructure
- B. Backgrounds in the detector
 - Single beam: Beam-gas, Touchek,
 - Luminosity: Radiative Bhabha, Two photons
 - Injection backgrounds

Feb 23, 2022

F.Forti - Belle II Upgrades

F. Forti @ VCI 2022

Mitigation measures

• A. Consolidate machine

- International task force at work to help
- Many countermeasures under development
- A major redesign of the Interaction Region may be required to go beyond $\sim 2 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$.
- B. Consolidate the detector
 - Install a complete PXD
 - Complete installation of more robust **TOP PMTs**
- C. Improve detector
 - Upgrade program to make the detector more robust against backgrounds and with improved performance

Luminosity plans (II)

Projection of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run

- We start long shutdown 1 (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

• A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.

Details on systematics (I)

$B \rightarrow K^* \ell \ell$ systematics table

Systematic (~ 1.0	(%)
~ 1.0	
	7
$\substack{+1.9\\-0.8}$	Belle
$^{+0.9}_{-0.5}$	
0.4	
2.5	
2.0	
3.4	
1.3 - 1.7	
< 0.5	
$\sim 1\%$	
1.2 - 1.5	
1.2	
2.9	
$+6.7 \\ -6.0$	
	$^{+1.9}_{-0.8}\\^{+0.9}_{-0.5}\\0.4$ $2.5\\2.0\\3.4$ $1.3 - 1.7\\<0.5\\\sim1\%\\1.2 - 1.5$ $1.2\\2.9\\^{+6.7}_{-6.0}$

Source No. of I Photon $|\pi^0/\eta$ vet Pion ide Kaon id $K_{
m S}^0$ reco π^0 select Tracking MVA se MC stat PDF sh Misreco Total

$B \rightarrow K^* \gamma$ systematics table						
	$K^{*0}[K^+\pi^-]\gamma$	$K^{*0}[K^0_{\rm S}\pi^0]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{ m S}\pi]$		
$B\overline{B}$ events	1.6	1.6	1.6	1.6		
selection	$\substack{+0.2\\-0.4}$	$\substack{+0.2\\-0.4}$	$\substack{+0.2\\-0.4}$	$\substack{+0.2\\-0.4}$		
to	3.8	3.8	3.8	3.8		
entification	0.6			0.6		
lentification	0.8		0.8			
onstruction		2.4		2.4		
tion		3.4	3.4			
g efficiency	1.4	1.4	0.7	1.4		
election	2.0	6.0	2.0	4.0		
tistics	0.2	0.5	0.3	0.3		
ape parameters	1.0	$^{+7.4}_{-5.4}$	$^{+2.4}_{-3.1}$	$\begin{array}{c} +0.6 \\ -1.4 \end{array}$		
nstructed signal	1.5	$\substack{+6.8\\-7.2}$	$\substack{+4.7\\-5.9}$	$^{+2.5}_{-3.1}$		
	5.3	$^{+13.2}_{-12.4}$	$\begin{array}{c} +7.9 \\ -8.9 \end{array}$	$+7.0 \\ -7.3$		

Details on systematics (II)

M_{X_s} bin	$B\overline{B}$	Detector	Background	Signal	Cross-feed	Peaking	$q\overline{q}~{ m BG}$	Frag.	Missing	Total
$({ m GeV}/c^2)$	counting	response	rejection	PDF	PDF	BG PDF	PDF		proportion	
0.6-0.7	1.4	2.7	3.4	0.0	0.0	0.0	0.0	-	-	4.5
0.7 - 0.8	1.4	2.6	3.4	0.1	12.2	7.8	0.0	-	-	15.3
0.8 - 0.9	1.4	2.6	3.4	0.2	0.4	0.5	0.0	-	-	4.5
0.9 - 1.0	1.4	2.6	3.4	0.1	0.5	0.4	0.0	-	-	4.5
1.0 - 1.1	1.4	2.6	3.4	0.1	2.9	1.1	0.3	-	-	5.4
1.1 - 1.2	1.4	3.0	3.4	0.4	3.1	1.7	0.2	32.1	1.2	32.1
1.2 - 1.3	1.4	3.2	3.4	0.2	1.6	0.9	0.0	2.1	1.0	5.6
1.3 - 1.4	1.4	3.2	3.4	0.2	1.6	0.2	0.0	2.6	1.9	6.0
1.4 - 1.5	1.4	3.1	3.4	0.2	2.0	0.1	0.0	4.0	1.3	6.7
1.5 - 1.6	1.4	3.3	3.4	0.6	2.2	0.1	0.0	2.4	1.3	6.1
1.6 - 1.7	1.4	3.5	3.4	0.1	1.7	2.1	0.2	2.8	1.9	6.7
1.7 - 1.8	1.4	3.6	3.4	0.1	2.2	1.7	0.2	3.4	1.0	6.8
1.8 - 1.9	1.4	3.7	3.4	0.1	1.9	2.0	0.1	3.6	2.1	7.2
1.9 - 2.0	1.4	3.7	3.4	0.1	4.2	4.0	0.1	3.7	1.6	8.8
2.0 - 2.1	1.4	3.8	3.4	0.1	5.6	0.6	0.2	17.8	2.2	19.5
2.1 - 2.2	1.4	3.8	3.4	0.3	3.7	2.5	0.4	21.9	1.9	23.1
2.2 - 2.4	1.4	3.8	3.4	0.1	7.4	7.1	0.0	25.5	1.6	28.0
2.4 - 2.6	1.4	3.8	3.4	0.1	11.5	21.8	0.3	29.6	1.0	38.9
2.6 - 2.8	1.4	3.8	3.4	0.1	44.7	101.0	0.9	29.4	2.0	113.9

TABLE VII. Systematic uncertainties (%) in each M_{X_s} mass bin.

Belle coll, Phys.Rev.D 91 (2015) 5, 052004, untagged $X_{s\gamma}$ sum of exclusive, 711 fb-1 $\mathcal{B}(B \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$

Belle coll, <u>Phys.Rev.Lett.103:241801,2009</u>, untagged $X_{s\gamma}$ inclusive, 605 fb-1

	$ $ BF($B \rightarrow X_{s'}$	$\gamma) (10^{-4})$
$E^{\rm B}_{\gamma-{\rm Low}}$ [GeV]	$1.70 \ 1.80 \ 1.9$	00 2.00
Value	$3.45 \ 3.36 \ 3.2$	21 3.02
\pm statistical	0.15 0.13 0.1	.1 0.10
±systematic	0.40 0.25 0.1	.6 0.11
	•	Syst
1. Continuum	$0.26 \ 0.16 \ 0.1$.0 0.07
2. Selection	0.15 0.12 0.1	.0 0.08
3. π^0/η	0.07 0.05 0.0	04 0.02
4. Other B	0.25 0.14 0.0	06 0.02
5. Beam bkgd.	$0.03 \ 0.02 \ 0.0$	0.01
6. Unfolding	0.01 0.01 0.0	0.02
7. Model	0.01 0.01 0.0	0 0.01
8. Resolution	0.05 0.03 0.0	0.00
9. γ Detection	0.03 0.02 0.0	00.00
$ 10. B \rightarrow X_d \gamma $	0.01 0.01 0.0	0.01
11. Boost	0.01 0.01 0.0	0.02

BF $(B \to X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$

Details on systematics (III)

previous + bkg norm.

previous + track. eff.

previous + neutr. gamma

Errors previous + neutr. unmatched

previous + PID

previous + FF (all)

03/17/2022

Collection of projections from physics book (I)

Observables	Belle $0.71 \mathrm{ab^{-1}}$	Belle II $5 \mathrm{ab}^{-1}$	F
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	
$A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$	4.0%	1.5%	
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	8.0%	2.2%	
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	

 $egin{aligned} ext{Observables} \ & \Delta_{0+}(B o K^* \gamma) \ & A_{CP}(B^0 o K^{*0} \gamma) \ & A_{CP}(B^+ o K^{*+} \gamma) \ & \Delta A_{CP}(B^+ o K^* \gamma) \ & \Delta S_{K^{*0} \gamma} \end{aligned}$

The Belle II Physics Book, PETP 2019, 123C01 (2019)

$3elle II 50 ab^{-1}$
3.2%
4.2%
5.7%
0.63%
0.85%
0.19%
0.26%
0.25%
0.48%
0.70%
0.30%
1.3%

	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
	2.0%	0.70%	0.53%
	1.7%	0.58%	0.21%
)	2.4%	0.81%	0.29%
	2.9%	0.98%	0.36%
	0.29	0.090	0.030

Collection of projections from physics book (II)

Observables	Belle $0.71 \text{ab}^{-1} (0.12 \text{ab}^{-1})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	—	—	< 2.1
${\rm Br}(B^+ \to K^+ \tau^\pm \mu^\mp) \cdot 10^6$			< 3.3

tagged analysis ONLY!

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
${\rm Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$			0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$			0.077

The Belle II Physics Book, PETP 2019, 123C01 (2019)

Collection of projections from physics book (II)

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$R_K \; ([1.0, 6.0] { m GeV^2})$	28%	11%	3.6%
$R_K \ (> 14.4 { m GeV^2})$	30%	12%	3.6%
$R_{K^*}~([1.0, 6.0]{ m GeV^2})$	26%	10%	3.2%
$R_{K^*} \ (> 14.4 { m GeV^2})$	24%	9.2%	2.8%
$R_{X_s}~([1.0, 6.0]{ m GeV^2})$	32%	12%	4.0%
$R_{X_s} \ (> 14.4 {\rm GeV^2})$	28%	11%	3.4%

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$A_{ m T}^{(2)}~([0.002, 1.12]{ m GeV^2})$	_	0.21	0.066
$A_{\rm T}^{ m Im}~([0.002, 1.12]{ m GeV^2})$	_	0.20	0.064

The Belle II Physics Book, PETP 2019, 123Co1 (2019)

Belle II - LHCb Comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in $B_{d_{r}} \tau$ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Observable

CKM precision, new physics in CP $\sin 2\beta/\phi_1 (B \rightarrow J/\psi K_S)$

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

Beauty 2020

+ Important contributions on B and D flavour physics from ATLAS, CMS, BESIII.

Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	LHCb upgrade II (300 fb ⁻¹)	
PViolation							
0.03	0.04	0.012	0.005	0.011	0.002	0.003	
13°	5.4°	4.7°	1.5°	1.5°	0.4°	0.4°	
4°	_	2	0.6°	_	0.3°	_	
4.5%	6%	2%	1%	3%	<1%	1%	
_	49 mrad	_	_	14 mrad	_	4 mrad	
0.08	0	0.03	0.015	0	0.007	0	
0.15	_	0.07	0.04	_	0.02	_	
enguins, LFUV							
0.32	0	0.11	0.035	0	0.015	0	
0.24	0.1	0.09	0.03	0.03	0.01	0.01	
6%	10%	3%	1.5%	3%	<1%	1%	
24%, –	_	9%, 25%	4%, 9%	_	1.7%, 4%	_	
_	90%	_	_	34%		10%	
_	8.5×10-4	_	5.4×10-4	1.7×10-4	2×10-4	0.3×10-4	
1.2%	_	0.5%	0.2%	_	0.1%	_	
<120×10-9	_	<40×10-9	<12×10-9	_	<5×10-9	_	
<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	<5×10-9	
• Possible in similar channels, lower precise							

nur channels, lower precision – *Not competitive*.

Phillip URQUIJO

57

