

Tau physics at Belle II

Zuzana Gruberová (on behalf of the Belle II collaboration)

30th International Symposium on Lepton Photon Interactions at High Energies January 11, 2022

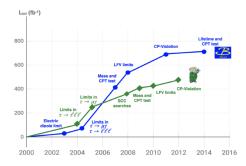
00

Motivation

Why are τ leptons interesting?

» 3rd generation particle

- the heaviest known lepton
- can decay to lighter leptons but also hadrons
- some NP scenarios predict enhanced τ couplings to NP
- » The τ properties are known with much smaller precision compared to e and $\mu!$



- » Possible τ physics probes
- CPT conservation
- lepton universality
- CKM unitarity
- new sources of CP violation
- lepton flavour and number violation
- ...more
- \rightarrow The key is the precision measurements!

The au physics at B-factories

B-factories are well-suited for τ lepton studies!

- » Asymmetric beam energies
- boosted collision products
- » Collision energy at ↑(4S)
- $\sigma(e^+e^-
 ightarrow Bar{B}) = 1.05$ nb
- $\sigma(e^+e^-
 ightarrow au^+ au^-) = 0.92 \ {
 m nb}$
- \rightarrow B-factories are also τ -factories!

- » Belle@KEKB and BaBar@PEP-II
- past B-factory experiments
- high luminosities: 711 fb⁻¹ @Belle, 424 fb⁻¹ @BaBar
- → B-factories contributed with variety of interesting results in the last two decades!

» Wide physics program

- precision SM measurements
- CP asymmetry parameters
- searches for lepton flavour/number violations
- …and many other topics
- » Advantages of B-factories
- well-defined kinematics of initial state
- high vertex resolution and excellent calorimetry
- sophisticated particle ID
- \rightarrow Great environment for the precision measurements of the τ lepton properties!

Belle II at SuperKEKB

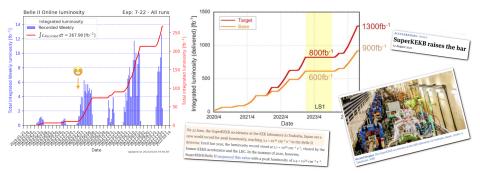
...B-factory of the next generation

» SuperKEKB

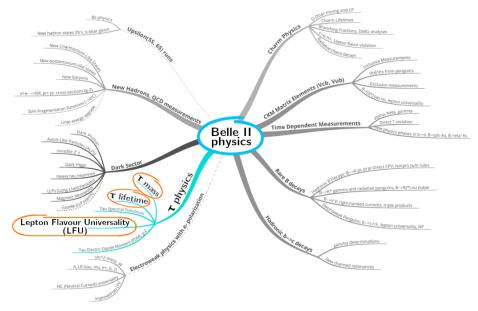
- major upgrade of KEKB, first collision in 2018
- asymetric beam energies of 7.0 GeV (e^-) and 4.0 GeV (e^+)
- nano-beam focusing, small interaction point, increased currents

- > Design luminosity of $6 \times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- \rightarrow higher background
- \rightarrow higher trigger rates

- » Belle II
- successor of the Belle experiment
- upgraded trigger system
 - ightarrow allows for the selection of signals that were not possible to trigger at Belle
- excellent tracking efficiency and improved vertex resolution
 - \rightarrow enables for new measurement approaches


Belle II performance

Despite the global pandemic, SuperKEKB managed to set new peak luminosity records!


- » World records achieved in the past year
- $1.96 \text{ fb}^{-1}/\text{day}$,
- 12 fb⁻¹/week,
- 40 $fb^{-1}/month$
- → luminosity above the B-factories and LHC, with a product of beam currents 3.5 times lower than KEKB

- » Milestones
- 500 fb⁻¹ by this summer (2022)
- $\mathcal{O}(10 \text{ ab}^{-1})$ by the upgrade of the IR (2026)
- 50 ab⁻¹ after the upgrade, by 2030.

https://cerncourier.com/a/superkekb-raises-the-bar/

Belle II au studies

The au mass measurement

 $(h \leftrightarrow 3\pi)$

» Lepton masses are fundamental parameters of the SM

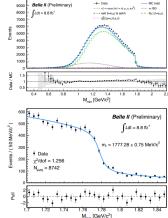
 $m_{e} = (0.5109989461 \pm 0.000000031)$ MeV $m_{\mu} = (105.6583745 \pm 0.0000024)$ MeV

 $m_{ au} = (1776.86 \pm 0.12) \; {
m MeV}$

- ightarrow the $m_{ au}$ precision impacts LFU tests!
- » Pseudomass measurement at Belle II
- method developed by ARGUS collaboration
- measured in $au
 ightarrow 3\pi
 u$ decay channel
- au mass can be calculated as

$$m_{\tau}^{2} = (P_{h} + P_{\nu})^{2} =$$

= 2E_{h}(E_{\tau} - E_{h}) + m_{h}^{2} - 2|\vec{p}_{h}|(E_{\tau} - E_{h})\cos(\vec{p}_{h}, \vec{p}_{\nu})

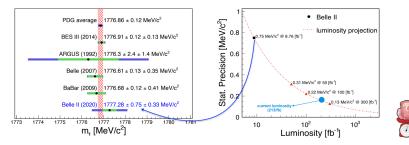

- since the direction of the neutrino is unknown, $\cos(\vec{p_h}, \vec{p_\nu}) = 1$ is taken and M_{min} is defined as

$$M^2_{min} = 2E_h(E_{\tau} - E_h) + m^2_h - 2|\vec{p_h}|(E_{\tau} - E_h) < m^2_{\tau}$$

- the M_{\min} distribution is then fitted to an empirical edge function, and the position of the cutoff indicates the value of the τ mass

» Challenges of the measurement

- find the most accurate empirical fitting function
- properly evaluate the estimator bias


Belle II measurement from 2020

arXiv:2008.04665

The au mass at Belle II

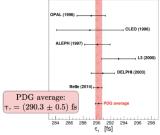
- » The goal is to achieve best precision among pseudomass measurements
- best measurement from pseudomass technique by Belle
- world-leading result by BES III using a different method (measurement in the production threshold)
- » Belle II measurement from 2020
- statistically dominated and in agreement with the world average
 → we will match the statistical precision of Belle/BaBar with 300 fb⁻¹
- systematic uncertainty at the level of Belle
 → we expect significant reduction in the main systematic uncertainties and further improvements of reconstruction efficiency

Tau mass poster (TAU2021)

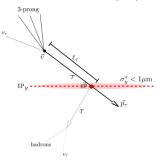
The au lifetime measurement

» Important SM parameter

- its precision affects LFU measurements, $lpha_{s}(m_{ au})$, etc.


» World-leading measurement by Belle

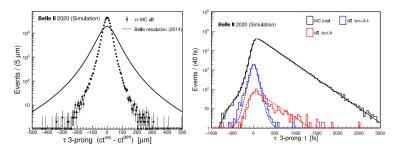
- uses a 3 \times 3 topology, with both tau leptons decaying to $3\pi\nu$


 $au_{ au} = 290.17 \pm 0.53 ({
m st\,at}) \pm 0.33 ({
m syst})$ fs

» Belle II approach

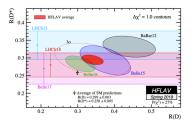
- 1. reconstruct vertex for 3-prong au
- only one 3-prong au
 ightarrow higher statistics
- 2. estimate the au momentum
- hadronic decays in both sides
- 3. find the production vertex
- intersection of au momentum with the plane IPy
- → possible due to the tiny beamspot size at the IP at Belle II
- » Greatest challenge of this method
- the τ momentum estimation and reconstruction of the production vertex

The au lifetime at Belle II


» Belle II MC measurement

 $au_{ au} = 287.2 \pm 0.5 (\mathrm{stat})$ fs

- → competitive statistical precision was reached already with 200 fb⁻¹ (compared to 711 fb⁻¹ used at Belle)


- » The measured lifetime presents \simeq 3 fs bias (generated value: 290.57 fs)
- ISR/FSR losses ightarrow underestimation of the proper time
- an intrinsic bias in the measurement
- » Further studies to estimate systematics
- test dependence on the resolution function in the fit
- beam-spot position
- ISR/FSR simulation
- vertex detector alignment (dominant systematic uncertainty at Belle)

Lepton flavour universality

- » Three lepton generations: e, μ, τ
- different masses
- different and separately conserved lepton numbers
- the coupling of leptons to W bosons is flavour-independent, $g_{m{e}}=g_{\mu}=g_{ au}$
- → This is the SM picture of leptons, however various experimental results presented in the past years suggest LFU violation!
- » Anomalies in quark sector
- $R(D) R(D^*)$ plane (3.1 σ),
- R(K) (3.1 σ), also $P'_{m{5}}$ in $B o K^* \mu^+ \mu^-$ (3.4 σ)
- and more..!
- » Significant tensions in lepton sector
- anomalous magnetic moment of μ (4.5 σ) and e (2.5 σ)

» LFU tests with au decays

-
$$e - \mu$$
 universality

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto \frac{BR(\tau^{-} \rightarrow \mu^{-} \bar{\nu_{\mu}} \nu_{\tau})}{BR(\tau^{-} \rightarrow e^{-} \bar{\nu_{e}} \nu_{\tau})}$$

$$- \tau - \mu$$
 universality

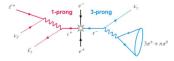
$$\left(rac{m{g}_{ au}}{m{g}_{\mu}}
ight)_{m{h}}^2 \propto rac{m{BR}(au
ightarrow m{h}
u_{ au})}{m{BR}(m{h}
ightarrow \mu
u_{ au})}$$

» Most precise measurements (BaBar)

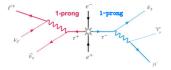
$$\left(rac{m{g}_{\mu}}{m{g}_{m{e}}}
ight)_{ au}=1.0036\pm0.0020$$

→ in agreement with the SM

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h} = 0.9850 \pm 0.0054$$

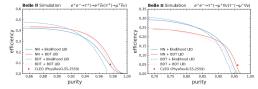

$$ightarrow$$
 2.8 σ below the SM prediction

PRL 105:051602 (2010)


LFU tests at Belle II

» Use 3×1-prong and 1×1-prong τ -pair events

BELLE2-NOTE-PL-2021-009

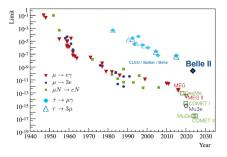


- $4 \times$ higher efficiency with better purity compared to BaBar for 3×1

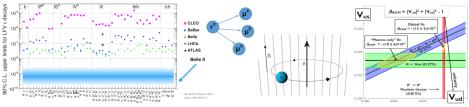
- 1×1 not used at BaBar but possible at Belle II thanks to the trigger performance
- better performance for $e-\mu$ and very close for $\mu-\mu$ compared to CLEO

Belle II and CLEO performance for 1×1

- » Main challenges of the analysis
- select signal with the highest possible purity
 → testing different lepton ID approaches
 (BDT-, likelihood-based)
 - \rightarrow employing MVA techniques (NN, BDT)
- reduce the LID systematic uncertainty → main systematics source at BaBar


...and more studies with au leptons

apart from ...


- » τ mass
- » τ lifetime
- » LFU tests

...there are ongoing studies on

- » V_{us} determination
- » au electric and magnetic dipole moments
- » Lepton flavour and number violation

Exciting results are coming!


Summary

- » Belle II experiment is ideal for precision measurements and NP searches (not only) in au physics!
- in 2021, SuperKEKB has set a new record in peak luminosity at $L_{peak} = 3.81 \times 10^{34} {
 m cm}^{-2} {
 m s}^{-1}$
- by summer, we expect to collect data of the order of the BaBar data set

» Tau lepton measurements at Belle II

- the τ mass studies with the early data using the pseudomass technique are expected to improve the measurement from 2020
- the lifetime measurements exploit the potential of the nano-beam scheme and upgraded vertex detection system
- probing of the LFU with τ decays using 3×1 and 1×1 τ -pair events aims for the world-leading measurement of $\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}$ and $\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h}$
- many more analyses ongoing

Belle II will be the major player in au physics in the near future!

Backup

(cartoon characters © Particle Boys and Otasaku)

Tau mass uncertainties

» Belle (2007) arXiv:hep-ex/0608046

» Belle II (2020) arXiv:2008.04665

TABLE I: Summary of systematic uncertainties		Systematic uncertainty	MeV/c^2
Source of systematics	σ , MeV/ c^2	Momentum shift due to the B-field map	0.29
Beam energy and tracking system	0.26	Estimator bias	0.12
Edge parameterization	0.18	Choice of p.d.f.	0.08
Limited MC statistics	0.14	Fit window	0.04
Fit range	0.04	Beam energy shifts	0.03
Momentum resolution	0.01	Mass dependence of bias	0.02
		Trigger efficiency	≤ 0.01
Model of $\tau \to 3\pi\nu_{\tau}$	0.02	Initial parameters	≤ 0.01
Background	0.01	Background processes	≤ 0.01
Total	0.35	Tracking efficiency	≤ 0.01

Tau lifetime uncertainties

» Belle (2014) arXiv:1310.8503

Source	$\Delta \langle \tau \rangle$ (μm)
SVD alignment	0.090
Asymmetry fixing	0.030
Beam energy and ISR/FSR description	0.024
Fit range	0.020
Background contribution	0.010
τ -lepton mass	0.009
Total	0.101

LFU parameters uncertainties

» BaBar (2010) arXiv:0912.0242

TABLE I: Number of selected events, purity, total efficiency, component of the efficiency from particle identification, and systematic uncertainties (in %) on R_i for each decay mode.

	μ	π	K			
\mathbf{N}^{D}	731102	369091	25123			
Purity	97.3%	78.7%	76.6%			
Total Efficiency	0.485%	0.324%	0.330%			
Particle ID Efficiency		74.6%	84.6%			
Systematic uncertainties:						
Particle ID	0.32	0.51	0.94			
Detector response	0.08	0.64	0.54			
Backgrounds	0.08	0.44	0.85			
Trigger	0.10	0.10	0.10			
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.01	0.07	0.27			
Radiation	0.04	0.10	0.04			
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)$	0.05	0.15	0.40			
$\mathcal{L}\sigma_{e^+e^- \rightarrow \tau^+ \tau^-}$	0.02	0.39	0.20			
Total [%]	0.36	1.0	1.5			

» CLEO (2020) PhysRevD.55.2559

TABLE XI. Relative errors (%) by source.

Source	\mathcal{B}_{e}	\mathcal{B}_{μ}	\mathcal{B}_h	${\cal B}_{\mu}/{\cal B}_{e}$	$\mathcal{B}_h/\mathcal{B}_e$
Statistics (n)	0.36	0.47	0.46	0.65	0.63
Normalization $(N_{\tau\tau})$	0.71	0.71	0.71		
Acceptance (\mathcal{A})	0.48	0.54	0.54	0.56	0.56
Trigger (\mathcal{T})	0.28	0.40	0.37	0.51	0.48
Background (f)	0.19	0.23	0.39	0.32	0.43
Particle Id (\mathcal{P})	0.16	0.32	0.31	0.36	0.34
Quadrature sum	1.00	1.15	1.18	1.10	1.12