

Hadronic B decays at Belle and Belle II

Markus Reif on behalf of the Belle and Belle II collaborations

Max Planck Institute for Physics, Munich

Lepton Photon 2021, Manchester 12 January 2022

mreif@mpp.mpg.de

Hadronic Charmed and Charmless B Decays

Charmed decays: B→D(*)h

- mediated through Cabibbo-favored $b{\rightarrow}c$ tree transitions
 - ➢ high branching fractions of ~0.5%
 - clean channels to test QCD predictions
 - serve as important control modes
- $B \rightarrow D(*)K$ modes are theoretically clean modes to precisely determine γ/Φ_3

Charmless decays: B→hh(h)

- mediated through Cabibbo-suppressed $\mathbf{b} \rightarrow \mathbf{u}$ tree or $\mathbf{b} \rightarrow \mathbf{d}$, \mathbf{s} loop transitions
 - sensitive to non-SM loop contributions
 - contribute to determination of all three CKM angles
- Challenges:
 - > small branching fractions $\sim O(10^{-5})$
 - > high backgrounds: $e^+ e^- \rightarrow q\overline{q}$

Analysis Workflow

1. Reconstruction

 combine final state particles (e.g., pions and kaons) in kinematic fits to form the B decay of interest

2. Selection

- optimized continuum suppression and particle ID criteria
- vetoes to remove peaking backgrounds (mainly in charmless)
- determine selection efficiencies for branching fraction calculations

3. Fit

- extract models in ΔE , M_{bc} (or more) from simulated data (+ calibrate on data)
- fit in to data and calculate physics quantities

4. Systematic Uncertainties

• evaluated with control modes and simplified simulations (toy studies)

Belle + Belle II 711fb⁻¹ 128fb⁻¹

Φ_3 from $B \rightarrow DK$ decays

 γ , Φ_3 is the phase between $b \rightarrow c$ and $b \rightarrow u$ transitions: $B \rightarrow DK$

 interference between two decays to same final state gives access to phase

$$\frac{\mathcal{A}^{\mathrm{suppr.}}(B^- \to \overline{D^0}K^-)}{\mathcal{A}^{\mathrm{favor.}}(B^- \to D^0K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

 $B^{-} \rightarrow D^{\theta} K^{-}$

 $B^{-} \rightarrow D^{\theta} K^{-}$

- D's reconstructed from: $K_S^0 \pi^+ \pi^-$ and $K_S^0 K^+ K^-$
- physics results limited by sample size, due to small branching fractions of involved decays

determination of Φ_3 is dependent on the physics of the D-decay

- could choose a model to describe the Dalitz plot
 > large systematic uncertainties
- here: use a binned model independent method
- independently measured D strong-phase parameters in each bin replace model (external input: CLEO & BESIII)
- observed yields per bin can be related to physics quantities of interest (Φ_3 , δ_B , r_B)

- 2D (ΔE , C') simultaneous fit of $B \rightarrow DK$ and $B \rightarrow D\pi$
- $K \pi$ misidentification rate is directly extracted from data

 $\phi_3(^{\circ}) = 78.4 \pm 11.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 1.0 \text{ (ext. input)}$

previous Belle result: PRD 85, 112014 (2012)

 $\phi_3(^\circ) = 77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3$

Improvements:

- multivariate K_S^0 selection
- improved background rejection
- new fitting strategy
- new strong phase inputs (BESIII)
- more data ($K_S^0 K K$ + Belle II)

most precise B-factory result

https://arxiv.org/pdf/2110.12125.pdf (accepted by JHEP)

kaon-enhanced $\mathfrak{L}(K/\pi) > 0.6$

first combined Belle and Belle II analysis

LP21 - Markus Reif

Belle: $\bar{B}^0 \to D^+ h^-$

$$\bar{B}^0 \to D^+ h^-$$

• theoretically clean modes to test factorization and SU(3) symmetry breaking in QCD

$$\mathcal{R}_{s/d}^{P(V)} \equiv \frac{\mathcal{B}(\bar{B}_s^0 \to D_s^{(*)+} \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{(*)+} K^-)}$$

- cancellation of most systematic effects
- tensions in branching ratio between theory predictions and measurements, R-ratios OK https://arxiv.org/pdf/2007.10338.pdf (Bordone et al.)

source	PDG [10^-3]	QCDF prediction [10^-3]	-
χ^2/dof			-
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	3.00 ± 0.23	4.42 ± 0.21	\rightarrow 4 σ
$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	0.186 ± 0.020	0.326 ± 0.015	→ 5σ
$\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)$	2.52 ± 0.13	—	
$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$	2.0 ± 0.5	$4.3^{+0.9}_{-0.8}$	→ 2σ
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	0.212 ± 0.015	$0.327^{+0.039}_{-0.034}$	→ 3σ
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	2.74 ± 0.13	<u> </u>	_
$\mathcal{R}^P_{s/d}$	16.1 ± 2.1	$13.5^{+0.6}_{-0.5}$	-
$\mathcal{R}^V_{s/d}$	9.4 ± 2.5	$13.1^{+2.3}_{-2.0}$	
$\mathcal{R}^{V/P}_{s}$	0.66 ± 0.16	$0.97^{+0.20}_{-0.17}$	ÜŃ
$\mathcal{R}_{d}^{V/P}$	1.14 ± 0.15	1.01 ± 0.11	

possible explanations:

- 1. presence of large non-factorizable contributions of $\mathcal{O}\left(15-20\%\right)$ to amplitudes
- 2. experimental issue
- 3. systematic shift in input parameters

4. new physics

$\overline{B}{}^0 \rightarrow D^+ h^-$

$$\begin{split} R^{D} &= 0.0819 \pm 0.0020 (\text{stat}) \pm 0.0023 (\text{syst}) \\ \mathcal{B}(\overline{B}{}^{0} \to D^{+}K^{-}) &= (2.03 \pm 0.05 \pm 0.07 \pm 0.03) \times 10^{-4} \\ \mathcal{B}(\overline{B}{}^{0} \to D^{+}\pi^{-}) &= (2.48 \pm 0.01 \pm 0.09 \pm 0.04) \times 10^{-3} \end{split}$$
 $\land COMPATIBLE COMPATI$

Belle: $\overline{B^0} \to D^{*+}h^-$

 $\overline{B}{}^0 \rightarrow D^{*+}h^-$

- used signal channels:
 - $D^{*+} \to D^0[K^-\pi^+]\pi^+$
 - $D^{*+} \to D^0 [K^- \pi^+ \pi^+ \pi^-] \pi^+$
- background from misreconstructed D*
- ΔE simultaneous fit of $\overline{B}^0 \rightarrow D^{*+}K^-$ and $\overline{B}^0 \rightarrow D^{*+}\pi^-$

$D^0 \to K^- \pi^+$	Result	Discrepancy
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	$(2.638 \pm 0.023 \pm 0.077) \times 10^{-3}$	1.7σ
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	$(2.178 \pm 0.090 \pm 0.078) \times 10^{-4}$	$1.0\sigma(2.7\sigma)$
$D^0 \to K^- 2 \pi^+ \pi^-$		
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	$(2.499 \pm 0.021 \pm 0.095) \times 10^{-3}$	2.0σ
$\mathcal{B}(\bar{B}^0\to D^{*+}K^-)$	$(2.134 \pm 0.082 \pm 0.086) \times 10^{-4}$	$1.1\sigma(2.8\sigma)$
Combined		
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	$(2.569 \pm 0.015 \pm 0.083) \times 10^{-3}$	1.9σ
${\cal B}(\bar B^0\to D^{*+}K^-)$	$(2.156 \pm 0.061 \pm 0.074) \times 10^{-4}$	$1.1\sigma(2.8\sigma)$

- slight deviations from theory predictions

 w/o brackets: <u>https://arxiv.org/pdf/1606.02888.pdf</u> (Huber et al.)
 w/ bracket: <u>https://arxiv.org/pdf/2007.10338.pdf</u> (Bordone et al.)
- results compatible with earlier Belle measurement
 - uncertainty improved by a factor of 3.5 <u>https://arxiv.org/pdf/hep-ex/0104051.pdf</u>

 $\bar{B}^0 \rightarrow D^{*+}h^-$

$$\mathcal{R}_{K/\pi} = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)}{\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)}$$

Channel	Result	Discrepancy
$D^0 \to K^- \pi^+$	$\mathcal{R}_{K/\pi} = (8.254 \pm 0.350 \pm 0.147) \times 10^{-2}$	1.7σ
$D^0 \to K^- 2 \pi^+ \pi^-$	$\mathcal{R}_{K/\pi} = (8.527 \pm 0.336 \pm 0.150) \times 10^{-2}$	2.5σ
Combined	$\mathcal{R}_{K/\pi} = (8.390 \pm 0.243 \pm 0.115) \times 10^{-2}$	2.7σ

total experimental uncertainty reduced to 3.2%

- LHCb: 5.5% ($\mathcal{R}_{LHCb} = \mathcal{B}(\bar{B}^0 \to D^{*+}K^-\pi^-\pi^+)/\mathcal{B}(\bar{B}^0 \to D^{*+}2\pi^-\pi^+)$) https://journals.aps.org/prd/pdf/10.1103/PhysRevD.87.092001
- BaBar: 5.7% (no simultaneous fit of kaon and pion sample) <u>https://arxiv.org/pdf/hep-ex/0509036.pdf</u>

Belle II: $B^0 \to K^0 \pi^0$

$$B^0 \to K^0 \pi^0$$

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\frac{\mathcal{A}_{K^{0}\pi^{0}}}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

 first branching fraction and A_{CP} measurement shown at Moriond 2021 <u>https://arxiv.org/pdf/2104.14871.pdf</u>

$$\mathcal{A}_{K^0\pi^0} = -0.40^{+0.46}_{-0.44}(\text{stat}) \pm 0.04(\text{syst})$$

 $\mathcal{B}(B^0 \to K^0 \pi^0) = [8.5^{+1.7}_{-1.6}(\text{stat}) \pm 1.2(\text{syst})] \times 10^{-6}$

update on branching fraction and A_{CP} plus time dependent CP violation

Summary

- Belle still in the game, producing world leading physics Integrated luminosity (delivered) [fb⁻¹] results
- Belle II has picked up pace
 - world leading results in charmless sector (i.e., $B^0 \rightarrow \pi^0 \pi^0$ and $B^0 \rightarrow K^0 \pi^0$) in ~1year
 - \succ improvements on Φ_3 longer scale
- possibility to combine Belle and Belle II datasets

new/updated results to come in the near future \rightarrow stay tuned

Belle II luminosity projection

Belle: $B^+ \rightarrow K^+ K^- \pi^+$

$B^+ \to K^+ K^- \pi^+$

- BaBar and LHCb reported on an excess at low M_{KK}
- split the sample into five M_{KK} bins

M_{KK}	N_{sig}	$\mathcal{S}(\sigma)$	\mathcal{A}_{CP}	$\mathcal{S}(\sigma)$	$d\mathcal{B}/dM~(\times 10^{-7})$
0.8-1.1	$59.81 \pm 11.38 \pm 2.58$	6.71	$-0.896 \pm 0.166 \pm 0.039$	4.80	$14.0 \pm 2.7 \pm 0.8$
1.1 - 1.5	$212.35 \pm 21.31 \pm 6.71$	12.49	$-0.157 \pm 0.098 \pm 0.007$	1.58	$37.8 \pm 3.8 \pm 1.9$
1.5 - 2.5	$113.45 \pm 26.74 \pm 18.59$	3.67	$-0.135 \pm 0.231 \pm 0.030$	0.57	$10.0 \pm 2.3 \pm 1.7$
2.5 - 3.5	$110.11 \pm 17.56 \pm 4.94$	7.37	$-0.092 \pm 0.158 \pm 0.009$	0.58	$10.0 \pm 1.6 \pm 0.6$
3.5 - 5.3	$172.64 \pm 25.68 \pm 7.39$	7.43	$-0.053 \pm 0.147 \pm 0.006$	0.36	$8.1\pm1.2\pm0.5$

- large A_{CP} of -0.896 with stat. significance of 4.8σ in first bin
- helicity angle gives insight in nature of 'state'

0.5

cos_h

January 12th, 2021

LP21 - Markus Reif

$B^+ \to K^+ K^- \pi^+$

tracks

|dr| < 0.2 cm and |dz| < 5cm

binary kaonID > 0.6

or binary pionID < 0.4

veto D⁰

1.85 < $M_{KK},\,M_{K\pi},M_{K^+\pi^-},\,M_{\pi^+K^-} <$ 1.85 (GeV/c^2)

veto J/ψ

 $3.06 < M_{ee}, M_{\mu\mu} < 3.14 (GeV/c^2)$

veto χ_{c0}

 $3.375 < M_{KK} < 3.475 (GeV/c^2)$

 \mathbf{B}^{-}

continuum suppression MVA > 0.88

-0.3 < ΔE < 0.3 GeV

 $5.24 < M_{bc} < 5.29 \text{ GeV/c^2}$

best candidate selection

average multiplicity: 1.344

select candidate with smallest χ^2 of B-vertex fit

 \rightarrow BCS selects the correct candidate in 92% of the cases

Belle II: $B^0 \to \pi^0 \pi^0$

$$B^0 \to \pi^0 \pi^0$$

- unique Belle II capability to study **all** $B \rightarrow \pi\pi$ channels in consistent manner to extract α/Φ_2
- very **challenging**: two π^0
- first branching fraction measurement shown at Moriond 2021 https://arxiv.org/pdf/2107.02373.pdf
 - **3D-fit** in ΔE , M_{bc} and transformed continuum suppression variable T_c

update on branching fraction plus direct CP violation

tracks

|dr| < 0.2 cm and |dz| < 1cm

fast kaon (pion) binary ID > 0.6 (<0.6)

fast kaon or pion: $\cos\theta > -0.6$ (Belle II)

slow kaons or pions: binary ID

 K_S^0 0.487 < InvM < 0.508 GeV/c^2 BDT: 'good' K_S^0

fast kaon or pion: $\cos\theta > -0.6$ (Belle II)

slow kaons or pions: binary ID

*D*⁰ 1.85 < InvM < 1.88 GeV/c^2

mass constrained fit

veto $e^+e^- \rightarrow cc$

 $D^{*+} \rightarrow D^0 \pi^+$: 0.143 < InvM(D^*) – InvM(D^0) < 0.149 GeV/c^2

B^+

 $-0.13 < \Delta E < 0.18 \text{ GeV}$

 $M_{bc} > 5.27 \text{ GeV/c}^2$

continuum suppression

Belle: C > 0.15

Belle II: C > 0.2

best candidate selection

average multiplicity: 1.02

select candidate with smallest χ^2 of B-vertex fit

 \rightarrow BCS selects the correct candidate in 65% of the cases

LP21 - Markus Reif

$$\mathsf{N}_{i}^{\pm} = \mathsf{h}_{\mathsf{B}^{\pm}} \left[\mathsf{F}_{i} + \mathsf{r}_{\mathsf{B}}^{2} \overline{\mathsf{F}}_{i} + 2\sqrt{\mathsf{F}_{i} \overline{\mathsf{F}}_{i}} (\mathsf{c}_{i} x_{\pm} + \mathsf{s}_{i} y_{\pm}) \right].$$

 $h_{B^{\pm}}$: Normalization constant.

Physics parameters of interest: $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 + \delta_B))$

Amplitude-averaged strong phase difference between $\overline{D^0}$ and D^0 over i^{th} bin and are obtained from external charm factories like *CLEO* and *BESIII*.

Fraction of pure D^0 decay to bin *i* taking into account the reconstruction and selection efficiency.

stolen from Niharika Rout's

CKM Workshop talk

Background suppression

January 12th, 2021

LP21 - Markus Reif

Source	$\sigma_{x_+^{DK}}$	$\sigma_{y_+^{DK}}$	$\sigma_{x_{-}^{DK}}$	$\sigma_{y^{DK}}$	$\sigma_{x_{\xi}^{D\pi}}$	$\sigma_{y^{D\pi}_{\xi}}$
Input c_i, s_i	0.22	0.55	0.23	0.67	0.73	0.82
PDF parametrisation	0.07	0.08	0.12	0.16	0.12	0.12
PID	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Peaking background	0.03	0.05	0.03	0.04	0.02	0.10
Fit bias	0.16	0.06	0.12	0.16	0.49	0.10
Bin migration	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Total	0.18	0.11	0.17	0.23	0.51	0.19
Statistical	3.15	4.20	3.27	4.20	4.75	5.44

Table 3. Systematic uncertainty summary. All values are quoted in units of 10^{-2} .

$\bar{B}^0 \rightarrow D^+ h^-$

\overline{B}^0

continuum suppression MVA > 0.88

 $-0.13 < \Delta E < 0.13 \text{ GeV}$

 $5.27 < M_{bc} < 5.29 \text{ GeV/c}^2$

veto $B^0 o K^{*0}[K^+\pi^-]J/\psi[l^+l^-]$

 $M_{\pi\pi}$ within ±3 σ of nominal J/ψ mass

best candidate selection

average multiplicity: 1.007

select candidate with smallest $|M_{bc} - m_{\bar{B}^0}|$

 \rightarrow BCS selects the correct candidate in 92% of the cases

tracks

|dr| < 0.2 cm and |dz| < 1.5cm

binary kaonID > 0.6

or binary pionID < 0.6

 D^+

mass within $\pm 2.5\sigma$ of nominal D⁺ mass

mass constrained fit

 $\bar{B}^0 \rightarrow D^+ h^-$

Source	R^D	$\mathcal{B}(\overline{B}^0 \to D^+ \pi^-)$	$\mathcal{B}(\overline{B}{}^0 \to D^+ K^-)$
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	_	1.71%	1.71%
Tracking	_	1.40%	1.40%
$N_{B\overline{B}}$	_	1.37%	1.37%
f^{00}/f^{+-}	_	1.92%	1.92%
$D^+ \to K^- \pi^+ \pi^+ \text{ model}$	_	0.69%	0.69%
PDF parameterization	2.71%	1.63%	1.79%
PID efficiency of K/π	0.88%	0.68%	0.73%
D^+ mass selection window	0.05%	0.56%	0.64%
J/ψ veto selection	0.12%	0.004%	0.15%
Peaking background yield	0.07%	0.04%	0.00%
MC statistics	< 0.01	0.04%	0.04%
Fit bias	_	0.58%	0.61%
Total	2.85%	3.43%	3.54%

LP21 - Markus Reif

Particle candidate	Requirement
all tracks	dz < 2 cm, dr < 4 cm
fast π^-	$\mathcal{L}_{K/\pi} < 0.6$
slow π^-	no requirements
K^{-}	$\mathcal{L}_{K/\pi} > 0.6$
D^0	$M - 3\sigma_M < M < M + 3\sigma_M$
D^{*+}	$\Delta M - 3\sigma_{\Delta M} < \Delta M < \Delta M + 3\sigma_{\Delta M}$
B^0	$M_{\rm bc} > 5.27 {\rm ~GeV}$
B^0	$-150~{\rm MeV} < \Delta E < 125~{\rm MeV}$

$\overline{B}{}^0 \rightarrow D^{*+}h^-$ decays

$D^0 o K^- \pi^+$			$D^0 ightarrow K^- 2 \pi^+ \pi^-$				Combined			
type	$\bar{B} \to D^{*+}\pi^-$	$\bar{B} \to D^{*+} K^-$	type	$\bar{B} \to D^{*+}\pi^-$	$\bar{B} \to D^{*+} K^-$	Type	$\bar{B} \to D^{*+} \pi^-$	$\bar{B} \to D^{*+} K^-$	Corr. coeff.	
π -ID stat.	$0.78\%(0.72\%^\dagger)$	0.54%	π -ID stat.	$0.95\%(0.65\%^\dagger)$	0.20%	π -ID stat.	$0.77\%(0.58\%^{\dagger})$	0.34%	3/5	
π -ID sys.	$0.60\%(0.44\%^\dagger)$	0.27%	π -ID sys.	$0.52\%(0.46\%^\dagger)$	0.20%	$\pi\text{-ID}$ sys.	$0.50\%(0.41\%^{\dagger})$	0.21%	3/5	
K-ID stat.	0.76%	$1.05\%(0.72\%^{\dagger})$	K-ID stat.	0.72%	$1.03\%(0.72\%^{\dagger})$	K-ID stat.	0.66%	$0.93\%(0.64\%^{\dagger})$	3/5	
K-ID sys.	0.53%	$1.15\%(0.61\%^{\dagger})$	K-ID sys.	0.57%	$0.62\%(0.62\%^{\dagger})$	K-ID sys.	0.49%	$0.80\% (0.55\%^\dagger)$	3/5	
$K\text{-}\mathrm{ID}$ run dep. sys.	0.30%	0.30%	$K\text{-}\mathrm{ID}$ run dep. sys.	0.30%	0.30%	K-ID run dep. sys.	0.27%	0.27%	3/5	
π_{slow} stat.	0.79%	0.79%	π_{slow} stat.	0.79%	0.79%	π_{slow} stat.	0.79%	0.79%	1	
$\pi_{\rm slow}$ sys.	0.01%	0.01%	$\pi_{\rm slow}$ sys.	0.01%	0.01%	π_{slow} sys.	0.01%	0.01%	1	
$\pi_{\rm slow}$ corr.	1.33%	1.33%	π_{slow} corr.	1.33%	1.33%	π_{slow} corr.	1.33%	1.33%	1	
3 tracks tracking sys.	1.05%	1.05%	5 tracks tracking sys.	1.75%	1.75%	tracking sys.	1.26%	1.26%	3/5	
MC stat.	$0.39\%^\dagger$	$1.4\%^\dagger$	MC stat.	$0.35\%^\dagger$	$1.39\%^\dagger$	MC stat.	$0.26\%^\dagger$	$0.99\%^\dagger$	0	
fixed yields bkg. PDF	$0.10\%^\dagger$	$0.10\%^\dagger$	fixed yields bkg. PDF	$0.10\%^\dagger$	$0.10\%^\dagger$	fixed yields bkg. PDI	$F = 0.07\%^{\dagger}$	$0.07\%^\dagger$	0	
fixed shapes bkg. PDF	$0.10\%^\dagger$	$0.10\%^\dagger$	fixed shapes bkg. PDF	$0.10\%^\dagger$	$0.10\%^\dagger$	fixed shapes bkg. PD	$F = 0.07\%^{\dagger}$	$0.07\%^\dagger$	0	
fit bias	$0.15\%^{\dagger}$	$0.15\%^{\dagger}$	fit bias	$0.08\%^{\dagger}$	$0.74\%^{\dagger}$	fit bias	$0.09\%^{\dagger}$	$0.37\%^\dagger$	0	
$N-B^0$ -mesons	1.84%	1.84%	$N-B^0$ -mesons	1.84%	1.84%	$N-B^0$ -mesons	1.60%	1.60%	1	
$\mathcal{B}(D^{*+}\to D^0\pi^+)$	0.74%	0.74%	$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.74%	0.74%	$\mathcal{B}(D^{*+}\to D^0\pi^+)$	0.74%	0.74%	1	
$\mathcal{B}(D^0 \to K^- \pi^+)$	0.78%	0.78%	$\mathcal{B}(D^0 \rightarrow K^- 2\pi^+ \pi^-)$	1.70%	1.70%	$\mathcal{B}(D^0)$	0.94%	0.94%	0	
total (Br.)	3.20%	3.60%	total (Br.)	3.81%	4.05%	total (Br.)	3.25%	3.42%		
total (ratio)	1.93%	1.93%	total (ratio)	1.89%	1.89%	total (ratio)	1.50%	1.50%		
fit stat. err.	0.84%	4.00%	fit stat. err. (Br.)	0.78%	3.70%	fit stat. err. (Br.)	0.57%	2.74%		

$B^0 \rightarrow K^0 \pi^0 \ (657 \times 10^6 \ B\overline{B} \ pairs)$

January 12th, 2021