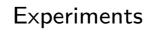


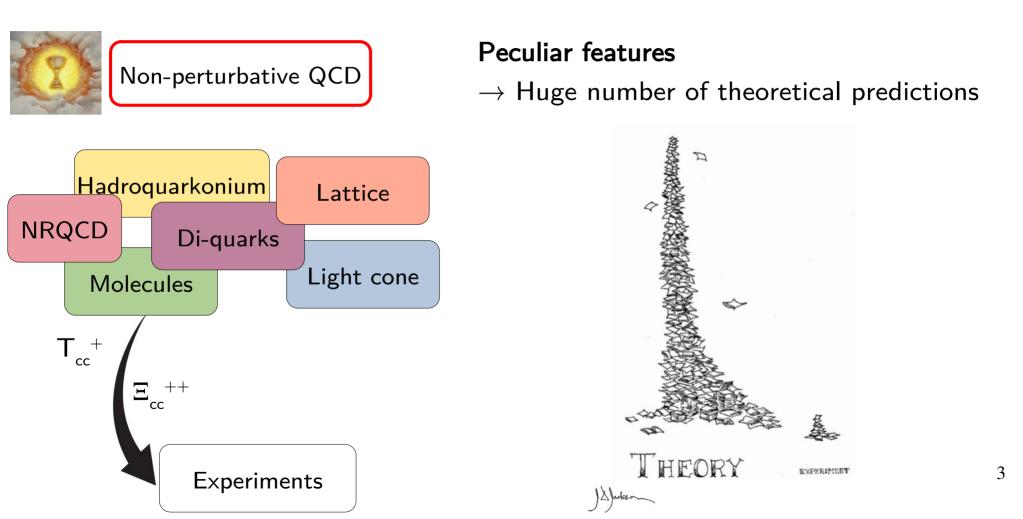
Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Spectroscopy: experimental review

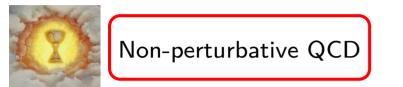
Lepton-Photon 2021 January 13th 2022 Umberto Tamponi tamponi@to.infn.it INFN – Sezione di Torino

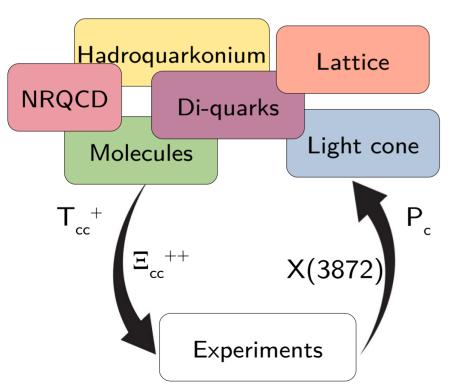


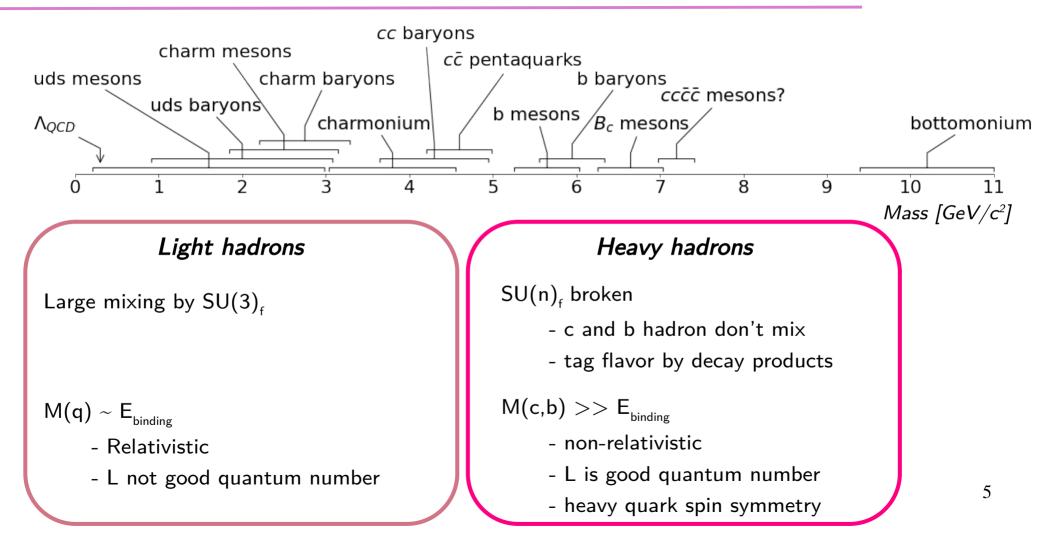
Spectroscopy = Non perturbative QCD


 \rightarrow Can't do direct calculation, rely

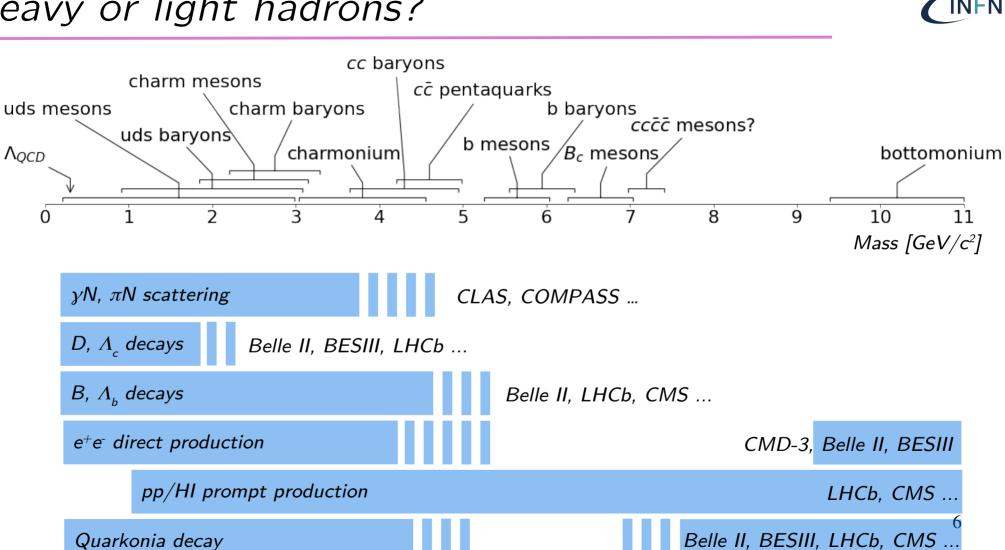
on models approximating QCD

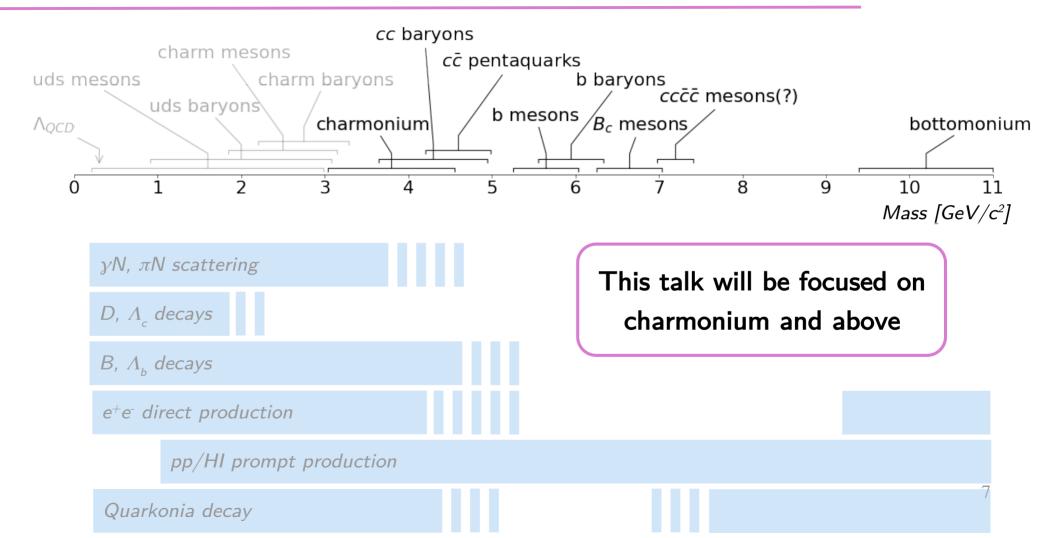

 \rightarrow Understand (solve?) QCD in the NP regime





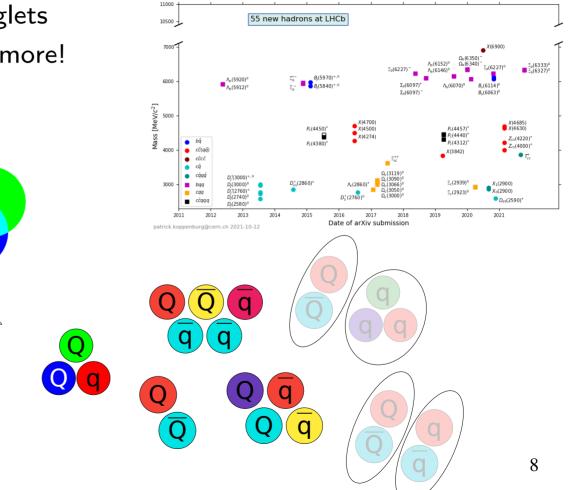
Peculiar features


- \rightarrow Huge number of theoretical predictions
- \rightarrow feedback loop
 - \rightarrow We often discover unpredicted features
 - \rightarrow New knowledge feeds back to theory



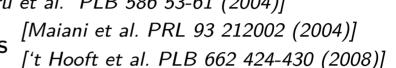
 Λ_{QCD}

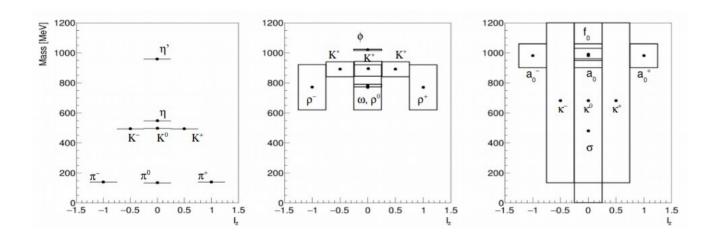
0



Why heavy mesons

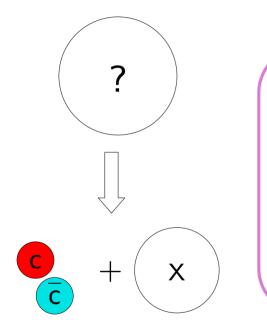
qq and qqq are not the only color singlets


- we are now sure there is much more!



Multi-quark systems are possible at any energy [Jaffe, Wilkez, PRL 91 232003 (2003)]

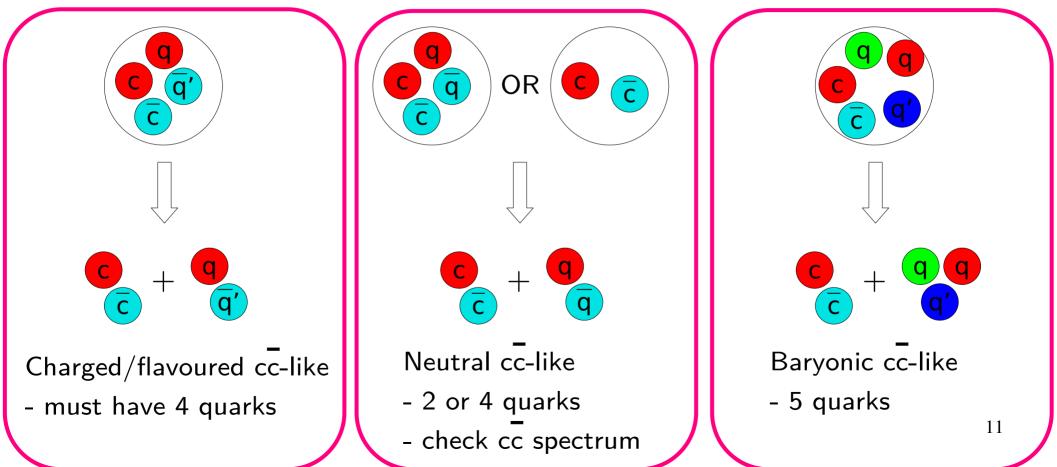
- proposed to describe $a_0(980)$ and $f_0(980)$ [Baru et al. PLB 586 53-61 (2004)]
- can explain inverted hierarchy in scalar mesons



However, no smocking gun to distinguish qq and qqqq in the light sector

With Heavy mesons separating conventional and exotics is much simpler

If a state has:


- Mass $> 3 \text{ GeV}/c^2$
- Narrow (Γ/M < 0.1)
- Decaying strongly into J/ψ (or $D\overline{D}$) + something

It must contain a cc pair

Why heavy mesons

With Heavy mesons separating conventional and exotics is much simpler

Part I: The news

The first charmed-strange tetraquark

First strange charmonium-like tetraquark ...

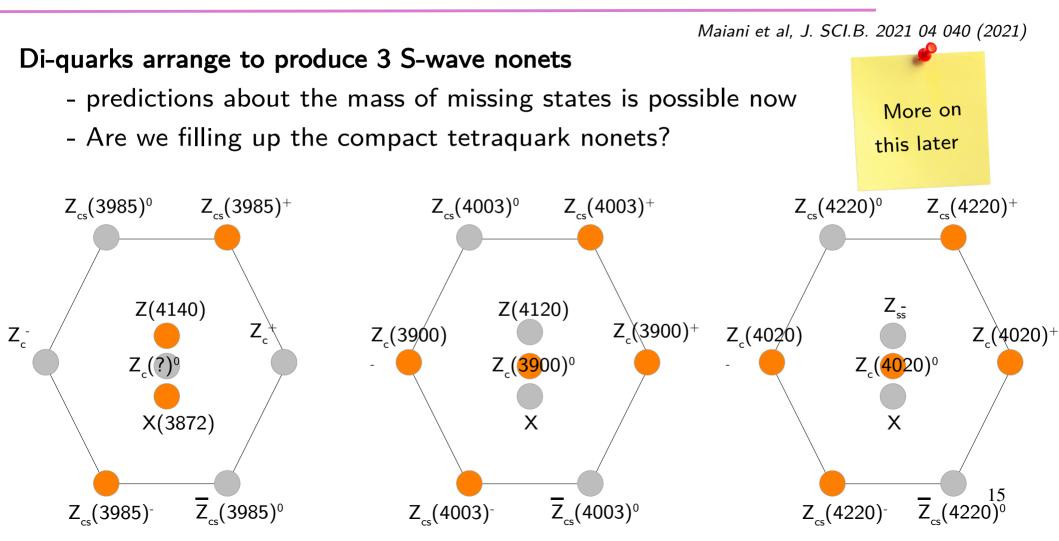
 $\begin{array}{l} \mathsf{BESIII} \ [PRL \ 126, \ 102001 \ (2021)] \\ \mathsf{e}^+\mathsf{e}^- \to \mathsf{K}^+ \ \mathsf{Z}_{_{\mathsf{CS}}}(3985)^- \to \mathsf{K}^+ \ (\mathsf{D}^*\mathsf{D}_{_{\mathsf{S}}}^- \ \mathsf{and} \ \mathsf{D}^-\mathsf{D}^*_{_{\mathsf{S}}}) \end{array}$

The first charmed-strange tetraquark

INFN

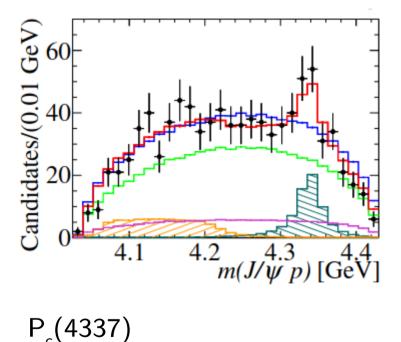
... Soon after followed by other 2

$$\begin{array}{l} \mathsf{BESIII} \ [PRL \ 126, \ 102001 \ (2021)] \\ \mathsf{e}^+\mathsf{e}^- \to \mathsf{K}^+ \ \mathsf{Z}_{_{\mathsf{cs}}}(3985)^- \to \mathsf{K}^+ \ (\mathsf{D}^*\mathsf{D}_{_{\mathsf{s}}}^- \ \mathsf{and} \ \mathsf{D}^-\mathsf{D}^*_{_{\mathsf{s}}}) \end{array}$$


LHCb [PRL 127, 082001 (2021)
B⁺
$$\rightarrow \Phi Z_{cs}(4220)^{+} \rightarrow \Phi (K^{+}J/\psi)$$

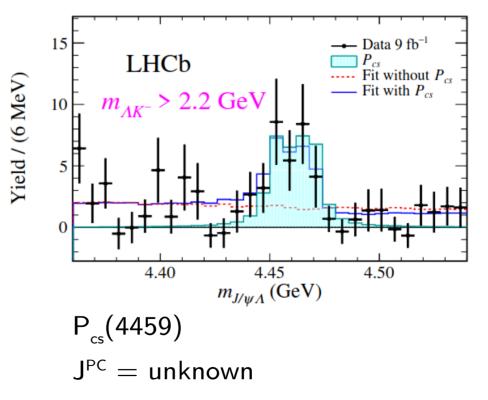
 $\begin{array}{l} LHCb \ \mbox{[PRL 127, 082001 (2021)]} \\ B^+ \rightarrow \ \Phi \ \mbox{Z}_{cs}(4000)^+ \rightarrow \ \Phi \ (K^+J/\psi) \end{array}$

The first charmed-strange tetraquark



New pentaquarks (now with strangeness)

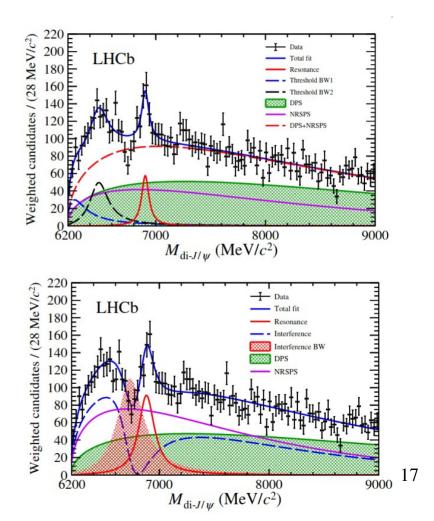
 $B_s \rightarrow J/\psi pp$


[arXiv:2108.04720]

 $J^{PC} = 1/2^+$ (probably)

 $\Xi_{_{b}} \rightarrow J/\psi ~\Lambda ~K$

[Sci.Bull. 66 (2021) 1278-1287]

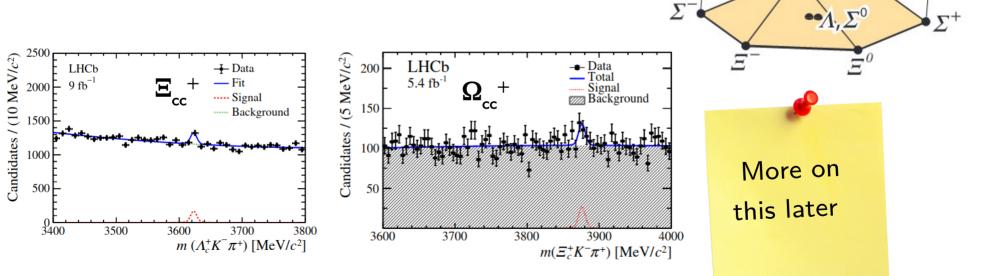

Fully-heavy states: X(3900)

 $pp \to J/\psi \ J/\psi \ + X$

[Sci. Bull. 65 1983 (2020)]

- Two structures in M(J/ ψ J/ ψ)
 - Narrow X(6900)
 - Broad enhancement @ threshold

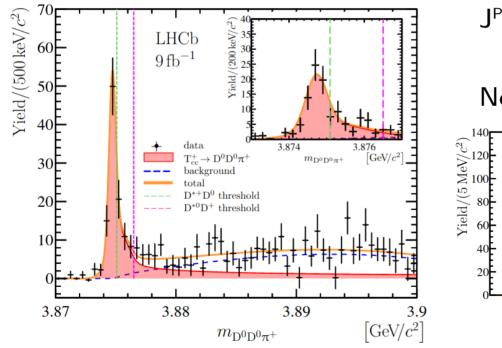
70+ theoretical interpretations


'CC

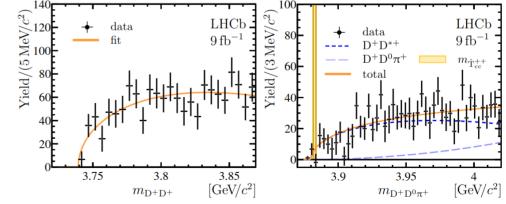
 Ω_{cc}

 ∇

2021: First hints of Ω_{cc}^{+} and Ξ_{cc}^{+} [Sci. China-Phys. Mech. Astron. 64, 101062 (2021)] [arXiv:2109.07292]

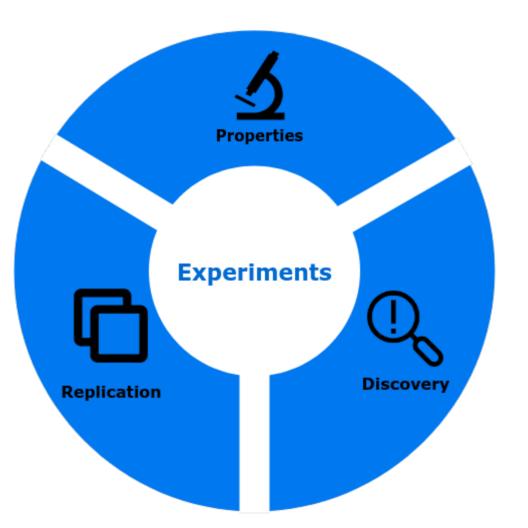


The T_{cc}

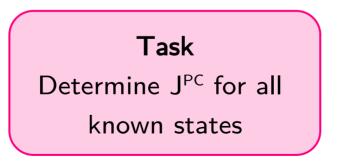

Prompt production of something decaying into $(DD^*)^+$

[arXiv:2109:01038 and arXiv:2109:01056]

$$\mathsf{J}^{\scriptscriptstyle\mathsf{PC}}=1^+$$
 (probably)

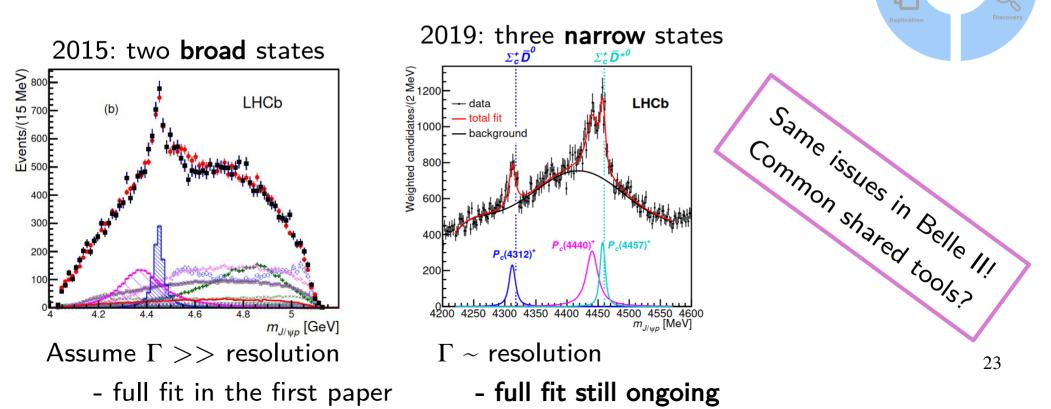

Nothing in the D^+D^+ channel

Part II: The path forward


Future challenges

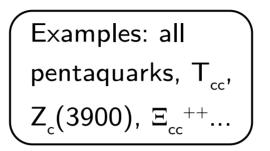
Mapping properties: J^{PC}

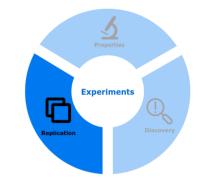
- $J^{\mbox{\scriptsize PC}}$ is not directly measured for several of the most recent states
 - pentaquarks: 0/5
 - charmonium-like: 30/42 (inc. quark model assignments)
 - heavy baryons: 28/52 (5/52 excl. quark model assignments)
 - heavy mesons: 31/42 (inc. quark model assignments)
 - bottomonium-like: 22/22 (inc. quark model assignments)


J^{PC} analysis: the pentaquark example

Experiments

- Cannot neglect the resolution
- Fit computationally very demanding



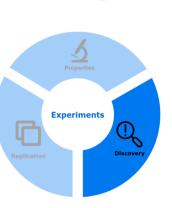

Look for new states

Many states have been seen in either

- \rightarrow 1 decay mode only
- \rightarrow 1 production mode only
- ightarrow 1 experiment only

Task

Look for known states where we have not seen them


(more or less) recent ideas to explore:

- Prompt production of exotica (4q/molecule) [EPJ C81, 669 (2021)]
- Photo-production of pentaquarks [PRD 101, 074010 (2020)]
- 4q in HI peripheral collisions [PRD 104, 114029 (2021)]

Broad-band, serendipitous searches have been extremely rewarding

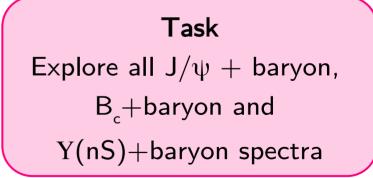
Task

Keep up the good bump hunting!

Look forward to: new pentaquarks

In di-quark models pentaquarks form octets and a decuplet [PRD 96, 014014 (2017)], [PLB 749, 289-291 (2015)]

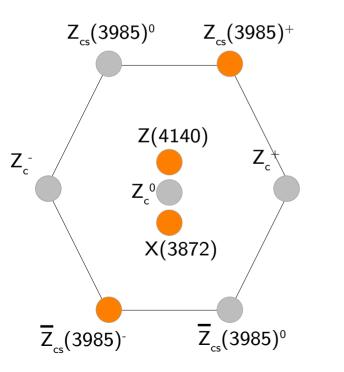
 $\begin{array}{c|cccc} P^{00}(4404) & & P^{0+}(4404) \\ uddc\bar{c} & & uudc\bar{c} \\ P^{1-}(\underline{4609})_{\underline{ddsc\bar{c}}} & & P^{10}(4609)P^{1+}(\underline{4609}) & I_{3} \\ \hline & & P^{1'}(\underline{4545})udsc\bar{c} & uusc\bar{c} \\ P^{2-}(4719) & & P^{20}(4719) \\ dssc\bar{c} & & ussc\bar{c} \end{array}$


Possible discovery modes: $\Xi_b(5794) \to K (J/\Psi \Sigma(1385))$ $\Omega_b^-(6049) \to \phi (J/\Psi \Omega^-(1672))$ $\Omega_b^-(6049) \to K (J/\Psi \Xi(1387))$

Molecular models also predict several states

[PRL 115, 122001 (2015)]

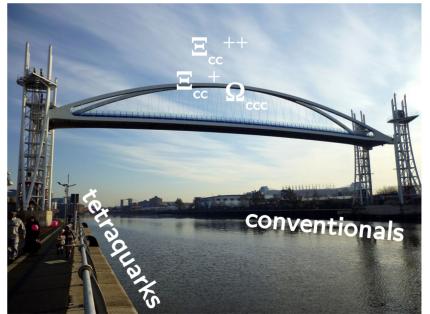
Channel	Minimum isospin	$\begin{array}{c} \text{Minimal quark} \\ \text{content}^{a,b} \end{array}$	$\frac{\text{Threshold}}{(\text{MeV})^c}$	S-wave J^P	Example of decay mode
$\Sigma_c \bar{D}^*$	1/2	$c \bar{c} q q q'$	4462.4	$1/2^{-}, 3/2^{-}$	$J\!/\psip$
$\Sigma_c B^*$	1/2	$c\overline{b}qqq^{\prime}$	7779.5	$1/2^{-}, 3/2^{-}$	$B_c^+ p$
$\Sigma_b \bar{D}^*$	1/2	$b \bar{c} q q q'$	7823.0	$1/2^{-}, 3/2^{-}$	$B_c^- p$
$\Sigma_b B^*$	1/2	$b\overline{b}qqq'$	11139.6	$1/2^{-}, 3/2^{-}$	$\Upsilon(nS)p$



Look forward to: the ccqq multiplets

Unique prediction of the compact tetraquark model

[J. SCI.B. 2021 04 040 (2021)]


rates needed

Look forward to: doubly-charmed objects

- The Ξ_{cc}^{++} is a (simple) benchmark to understand the c-c interaction \rightarrow Can generalize to other cc+q, qq hadrons (predict T_{cc} mass!) [Karliner, Rosner, PRL 119, 202001 (2017)]
 - → Succesfull history of predictions [Karliner, Rosner, PRD 90, 094007 (2014)]

Task Complete the double-chamed baryons spectra and multiplets, **look for more T**_{cc}

Look forward to: hadrons with beauty

Patterns seen with charm should repeat with b-quark

- \rightarrow Smaller relativistic corrections
- \rightarrow Stronger selection rules (Heavy quark spin symmetry...)

Experimentally challenging

 \rightarrow Only prompt production at LHC

 $\rightarrow \text{but } \sigma_{_{\text{prompt}}}[\text{pp} \rightarrow \text{Y(1S)}] \sim 0.0003 \times \sigma_{_{\text{prompt}}}[\text{pp} \rightarrow \text{J/\psi}]$

 \rightarrow Can produce Y(nS) 1- states at e^+e^-

 \rightarrow Strongly depend on the the BF for the Y(nS) to your state

ightarrow Ecm @ Belle II limited to ~11 GeV (threshold for T $_{_{bb}}$ ~ 19-20 GeV) $_{_{29}}$

Look forward to: hadrons with beauty

Patterns seen with charm should repeat with b-quark

 \rightarrow Smaller relativistic corrections

Experimentally ch

 \rightarrow Only prom

 \rightarrow but σ

 \rightarrow Stronger selection rules (Heavy quark spin symmetry...)

B-hadrons are much less known than their charmed counterparts

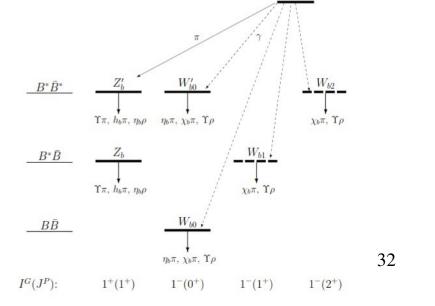
 \rightarrow Can produce Y(nS) 1⁻⁻ states at e⁺e⁻

- \rightarrow Strongly depend on the the BF for the Y(nS) to your state
- ightarrow Ecm @ Belle II limited to ~11 GeV (threshold for T_{bb} ~ 19-20 GeV)

For LHC(b) (run 3?)

 \rightarrow The T_{bb}⁺ could be stable against strong and EM decays! [PRL 119, 202001 (2017)] [PRL 119, 202002 (2017)]

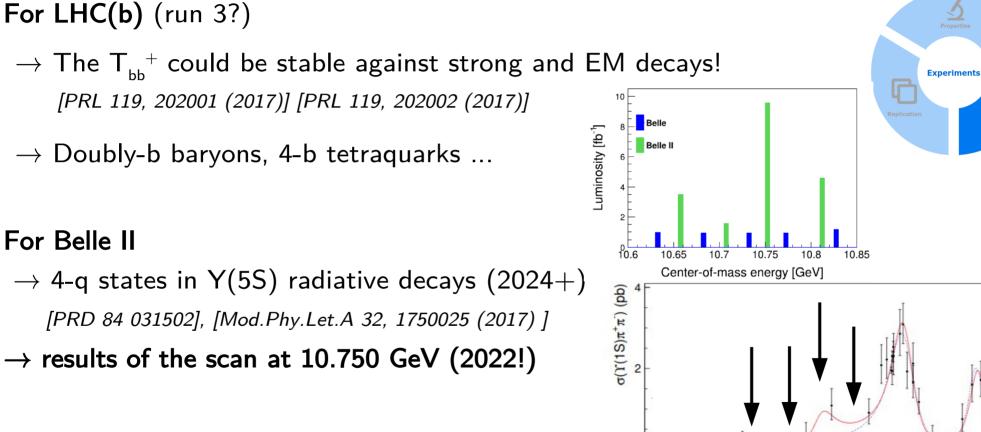
 \rightarrow Doubly-b baryons, 4-b tetraquarks ...


For LHC(b) (run 3?)

 \rightarrow The T_{bb}⁺ could be stable against strong and EM decays! [PRL 119, 202001 (2017)] [PRL 119, 202002 (2017)]

 \rightarrow Doubly-b baryons, 4-b tetraquarks ...

For Belle II


 \rightarrow 4-q states in Y(5S) radiative decays (2024+) [PRD 84 031502], [Mod.Phy.Let.A 32, 1750025 (2017)]

 $\Upsilon(5S)$

10.6

10.5

10.7

10.8

10.9

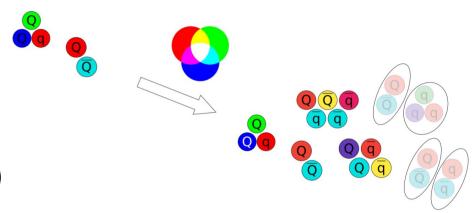
11 E_{cm} (GeV)

- \rightarrow The T_{bb}⁺ could be stable against strong and EM decays!
- \rightarrow Doubly-b baryons, 4-b tetraquarks ...

For Belle II

 \rightarrow 4-q states in Y(5S) radiative decays (2024+) [PRD 84 031502], [Mod.Phy.Let.A 32, 1750025 (2017)] \rightarrow results of the scan at 10.750 GeV (2022!)

Look forward to: hadrons with beauty



Properties

The heavy hadrons gave us solid experimental evidences of exotic states

- \rightarrow bb, cc, and cc 4-quark states
- \rightarrow cc, pentaquarks
- 3(+) experiments are taking data \rightarrow LHCb, Belle II, BES III (CMS, CLAS...)

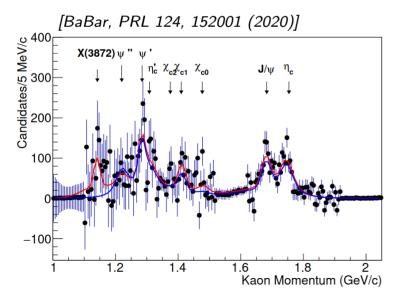
With more data we can (hopefully!) start constraining the theoretical models

- \rightarrow Quantum numbers for all known states
- \rightarrow Doubly-heavy baryons and missing tetraquarks
- \rightarrow Beauty counterparts of charmed hadrons

Backup

Mapping properties: absolute BFs

Mapping properties: absolute BFs



When we observe a new state ${\sf S}$ we access

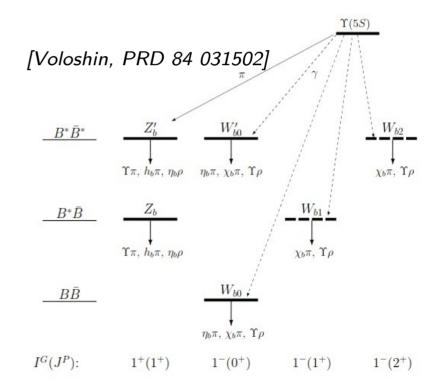
$$\mathsf{Rate} = \sigma_{\mathsf{production}}(\mathsf{S}) imes \mathsf{BF}(\mathsf{S} o \mathsf{final state})$$

Workaround: measure inclusive production BF from B mesons

- $\mathsf{B}^{\scriptscriptstyle +} \to \,\mathsf{K}^{\scriptscriptstyle +}\;\mathsf{X}$
- X not reconstructed. Use K^+ recoil
- Measure production BF

Next generation b-factories: use this method as much as possible

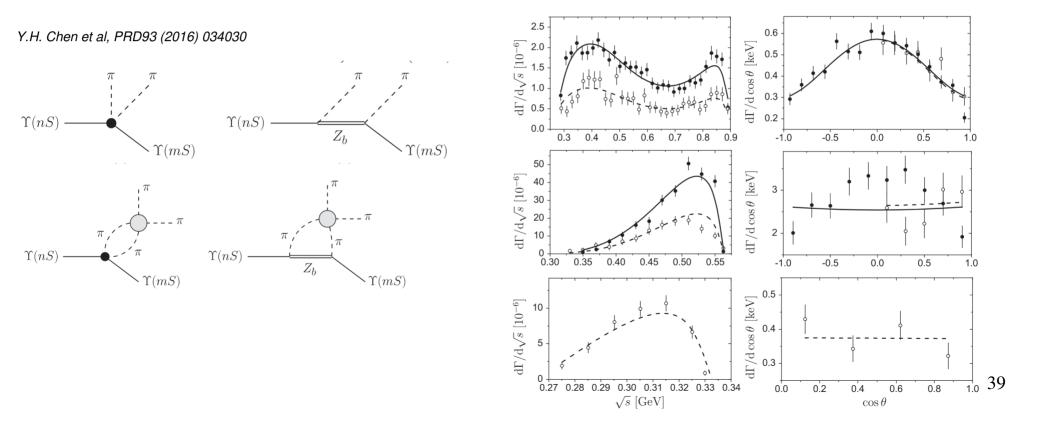
Future challenges: hadrons with beauty



Exotic search with Ecm < 12 GeV are challenging

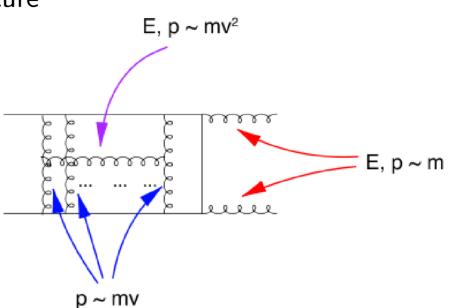
 \rightarrow rely on rare, soft EM transitions

[Ali et. Al., Prog. Part. Nucl. Phys. 97 (2017) 123-198]


		charmonium-like		bottomonium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0++		3756		10562
X'_0	0++		4024		10652
X_1	1++	X(3872)	3890		10607
Z	1+-	$Z_{c}^{+}(3900)$	3890	$Z_{b}^{+,0}(10610)$	10607
Z'	1+-	$Z_{c}^{+}(4020)$	4024	$Z_b^+(10650)$	10652
X_2	2^{++}		4024		10652
Y_1	1	Y(4008)	4024	$Y_b(10890)$	10891
Y_2	1	Y(4260)	4263	$\Upsilon(11020)$	10987
Y_3	1	Y(4290) (or $Y(4220)$)	4292		10981
Y_4	1	Y(4630)	4607		11135
Y_5	1		6472		13036

Bottomonium: alternative approaches

Exotic stats contribute to the transitions from narrow quarkonia? \rightarrow new (?) approach to heavy spectroscopy



Why is bottomonium so special?

A clean spectrum is not the only distincitve feature

- \rightarrow A QCD multi-scale system
 - \rightarrow each feature is controlled by a different scale
 - \rightarrow From perturbative to non-perturbative in one system!
- \rightarrow A lepton-pair factory
 - ightarrow BF(Y ightarrow II) \sim 2.5%
 - \rightarrow (almost) purely EM process

Charmonium is experimentally easy and accessible

- \rightarrow Direct production in e⁺e⁻ collisions \bigcirc
- \rightarrow Production in B \rightarrow K cc

- \rightarrow Photon-photon scattering $\gamma\gamma^* \rightarrow (cc)$

₩

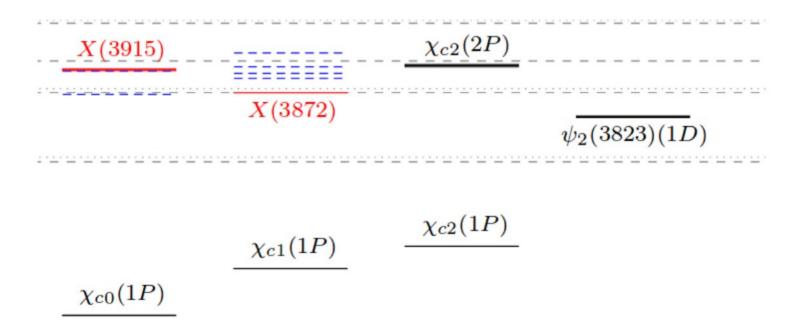
 \rightarrow Double Charmonium $e^+e^- \rightarrow (cc)(cc)$

 \rightarrow Prompt production Kick Statis

 \rightarrow Direct production in pp (???)

Bottom line: Charmonium will still be fully covered in the next 15 yrs.

Bottomonium is much less accessible


 \rightarrow Direct production in e⁺e⁻ collisions $\frac{2}{2}$

Bottom line: after Belle II, bottomonium studies will havestrong limitations

- \rightarrow The only exotica to have been observed in several different conditions
- \rightarrow A narrow peak \sim at the DD* threshold
- \rightarrow Same quantum numbers as a $\chi_{c1}(2P)$, completely different properties

Is there an X(3872) counterpart?

+ Data

No χ_b(3P

10.5

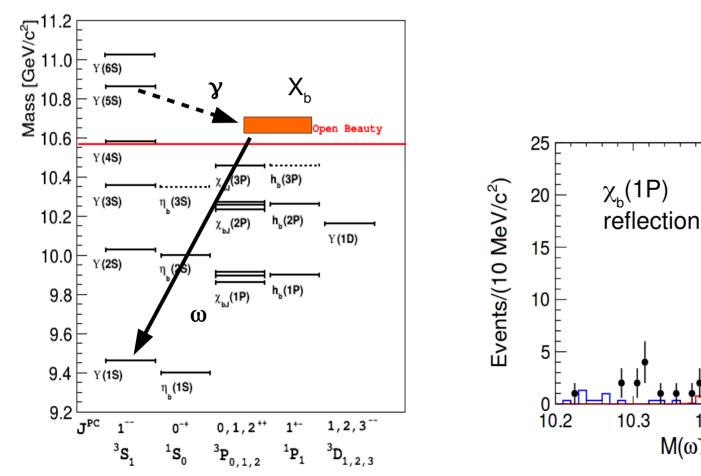
10.4

 $M(\omega \Upsilon(1S))$ (GeV/c²)

 $-\gamma X_{h} MC$

___ωχ_{ь.} MC

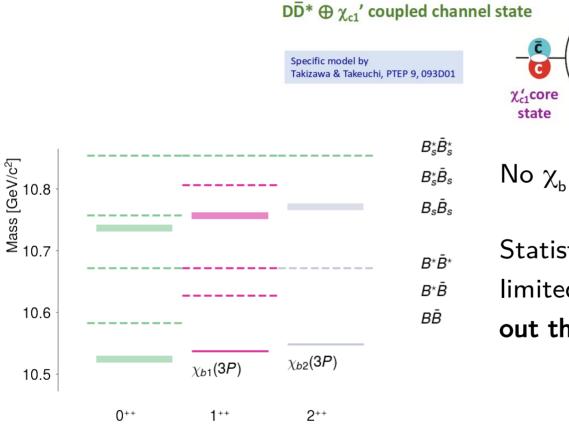
_____ω sideband


10.6

10.7

44

No X



Why no X_h ?

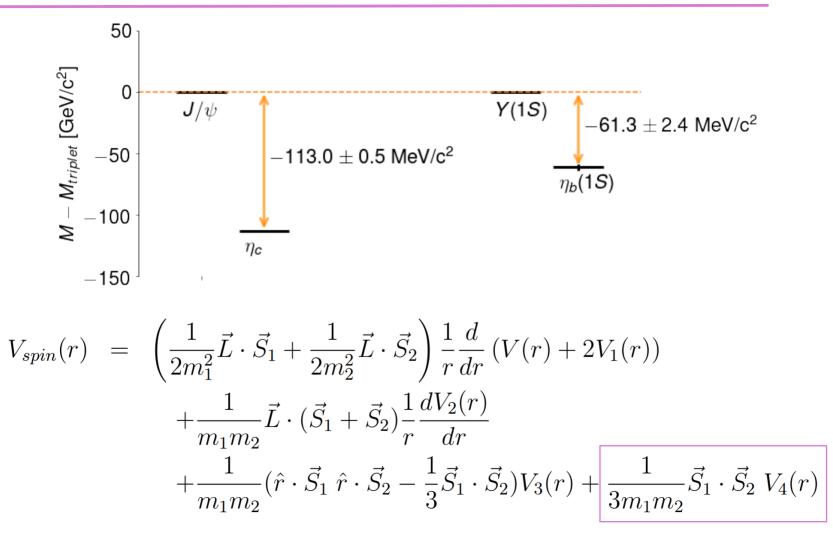
The X(3872) may generated by a peculiar coincidence

No $\chi_{_{\! b}}$ is near the BB* threshold, no $X_{_{\! b}}$

D*

D⁺

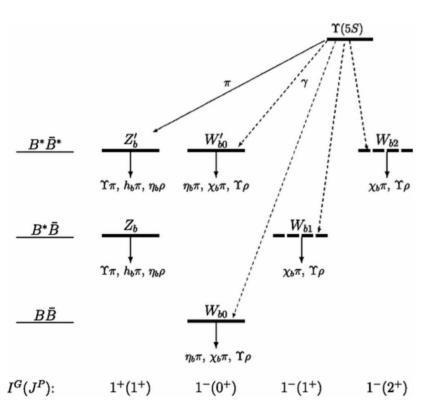
D*0


 $\left| \sqrt{2\mu_{DD}} BE \right| \ge 8 \text{ fm}$

D

Statistics in bottomonium is still too limited. Need to set a stronger UL to rule out the X_{b} tetraquark hypothesis

The ground states

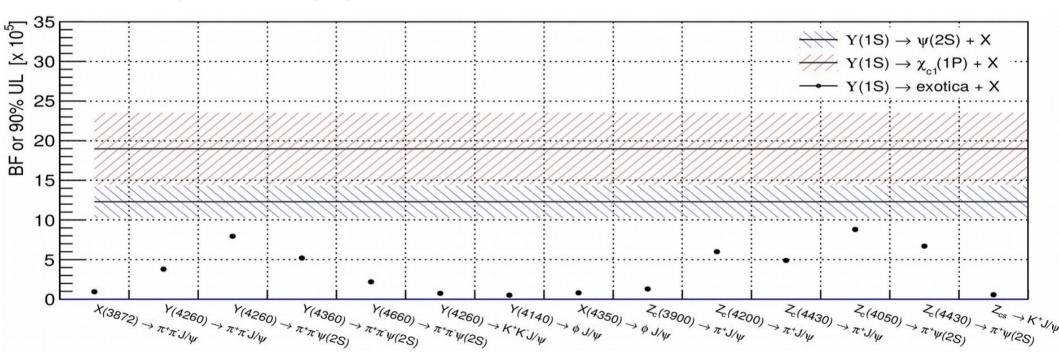


46

Y(5S) and Y(6S): new exotica

 \rightarrow If the $Z_{_b}$ is a loosely bound state, then several other molecules must appear \rightarrow No predictions on the production rates

Mod. Phys. Lett. A 32, 1750025 (2017)


$I^G(J^P)$	Name	Composition	Co-produced particles [Threshold, GeV/c^2]	Decay channels
$1^+(1^+)$	Z_b	$Bar{B}^*$	π [10.75]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^+(1^+)$	Z_b'	$B^*ar{B}^*$	π [10.79]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS) ho$
$1^{-}(0^{+})$	W_{b0}	$Bar{B}$	ρ [11.34], γ [10.56]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(0^{+})$	W_{b0}^{\prime}	$B^*ar{B}^*$	$ ho$ [11.43], γ [10.65]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(1^{+})$	W_{b1}	$Bar{B}^*$	$ ho$ [11.38], γ [10.61]	$\Upsilon(nS) ho$
$1^{-}(2^{+})$	W_{b2}	$B^*\bar{B}^*$	$ ho \ [11.43], \ \gamma \ [10.65]$	$\Upsilon(nS) ho$
$0^{-}(1^{+})$	X_{b1}	$Bar{B}^*$	$\eta [11.15]$	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^{-}(1^{+})$	X'_{b1}	$B^*ar{B}^*$	η [11.20]	$\Upsilon(nS)\eta,\eta_b(nS)\omega$
$0^+(0^+)$	X_{b0}	$Bar{B}$	ω [11.34] γ [10.56]	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(0^+)$	X_{b0}'	$B^*ar{B}^*$	ω [11.43] γ [10.65]	$\Upsilon(nS)\omega, \eta_b(nS)\eta$
$0^+(1^+)$	X_b	$Bar{B}^*$	ω [11.39] γ [10.61]	$\Upsilon(nS)\omega$
$0^+(2^+)$	X_{b2}	$B^*\bar{B}^*$	ω [11.43] γ [10.65]	$\Upsilon(nS)\omega$

Charmonium in bottomonium

Lots of observation of exotica, but quite few completely independent confirmations \rightarrow Only X(3872) has been seen in prompt production (in pp and pp collisions)

Based on Phys. Rev. D 93, 112013 [Belle]