Status & Outlook for R_D(*) & R_K(*) from Belle/Belle II

Toru lijima KMI, Nagoya University / IPNS, KEK Belle II spokesperson

December 15, 2021

Belle II at SuperKEKB

Plan to collect 50 ab⁻¹ of collisions at and near $\Upsilon(4S)$ Successor to Belle at KEKB (1.05 ab⁻¹)

At $\Upsilon(4S)$, $E_{CM} = 10.58 \text{ GeV}$ 4 GeV e^+ (LER; Low Energy Ring) Belle II detector $\mathscr{L} = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \frac{I_{\pm}\xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y}\right)$

5.9 → 0.3 mm **SuperKEKB** KEKB

Physics motivations

- New physics search in B, B, D, τ decays
- Direct search for light new particles
- Precise measurement of Standard Model
- Hadron physics

Belle II detector

Superconducting solenoid (1.5 T)

Electromagnetic calorimeter

CsI(TI), waveform sampling

Tracking detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

Silicon vertex dete

- 1→2 layers DEPFET (pixel)
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

K_L and μ detector

Resistive plate chamber (outer barrel) Scintillator + MPPC (inner 2 barrel layers, end-caps)

Particle ID detectors

TOP (Time-of-Propagation) counter (barrel)
Aerogel RICH (forward end-cap)

Trigger and DAQ

Max L1 rate: 0.5→30 kHz Pipeline readout

Belle II Collaboration

- ~240/~140/~70 (Ph.D/Msc/Undergrad.) students
- 123 institutes
- 26 countries/regions

Status of the SuperKEKB/Belle II

highlight of the 2021 run by summer

Luminosity records (recorded/delivered):

- L_{shift} = 747.2 / 787.6 pb⁻¹
- L_{day} = 1.964 / 2.233 fb⁻¹
- L_{7days} = [2.[4] / [3.482 fb⁻¹
- L_{30days} = 42.319 / 47.370 fb⁻¹

Exp: 7-18 - All runs Belle II Online luminosity 14 213.6 Integrated luminosity Recorded Weekly Total integrated Weekly luminosity [fb⁻¹] 12 $\int \mathcal{L}_{Recorded} dt = 213.49 \, [\text{fb}^{-1}]$ luminosity [fb⁻¹] 2021ab 10 150 2020ab **Fotal integrated** 90.4 2020c 50 2019ab 2019c Data taking efficiency: 88.8 (2020c) 89.5% (2021ab) 100 90 80 Fraction (%) 70 60 50 40 30 Physics run / whole run time 20 DAQ running / physics run 10 DAQ running - dead time) / physics run 0 2019c 2020ab 2020c 2021ab

Luminosity record is updating! $L_{peak} = 3.32 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $L_{day} = 2.15 \text{ fb}^{-1}$ (delivered) on Dec.11

"B anomalies"

Indications for violation of lepton flavor universality have been claimed in the two types of B decays.

Are these clues for new physics?

Advantage of e⁺e⁻ B factories

- Clean environment
 - Efficient detection of neutrals (γ, π⁰, η, ...)
- Good hermeticity
 - acceptance close to 4π
- Full reconstruction tagging possible

Inclusive measurements; B \rightarrow Xs I+I-

Easier bremsstrahlung energy recovery for electrons, $eff(e) \sim eff(\mu)$

Measurements of

- b→u semileptonic decays
- decays with large missing energy

Measurement of the τ polarization

- Systematics different from experiments at hadron machines
 - Two experiments are required to establish NP

$B \rightarrow D^{(*)} \tau V$

- New Physics may appear in tree level.
- 3rd generation quark (b) and lepton (τ) involved.
 - large masses \rightarrow sensitivity to NP
 - Charged Higgs, Leptoquark, ...
- Quantities of interest
 - Lepton Flavor Universality :
 - R(D), R(D*)
 - Polarization: P_τ, P_{D*}
 - q² distribution etc.
- Complementary to $B \rightarrow \tau v$
 - Different sensitivity to NP models.

W-/H-

U

$B \rightarrow D^{(*)} \tau v$ reconstruction at Belle/Belle II

- In SM, $\mathcal{B}(B^+ \to \overline{D}{}^0 \tau^+ \nu_{\tau}) = 0.66\%$ and $\mathcal{B}(B^+ \to \overline{D}{}^{*0} \tau^+ \nu_{\tau}) = 1.23\%$

- but reconstruction of τ is challenging due to multiple neutrinos.
 - ightarrow Need full reconstruction of the event
 - Suppress non-BB bkgd. and misreconstructed events
 - ightarrow quite low efficiency
 - ightarrow need a high statistics

Reconstruct one of the B's decaying

- 1. Hadronically ($\varepsilon_{sig} \approx 0.2\%$)
- 2. Semileptonically ($\varepsilon_{
 m sig} \approx 0.5\%$)
- 3. Inclusively ($\varepsilon_{
 m sig} \approx a$ few %)

Select the other B of the signal decay with
a D^(*)

• a charged daughter of au

 $B_{\rm tag}^- B_{\rm s}^+$

- 1. Leptonic τ decay
- 2. Hadronic τ decay

Background from $B \rightarrow D^{**}$ decays, where the D^{**} isn't identified as such and mimics a D^* (one of the major sources of the systematic errors)

$B \rightarrow D^{(*)} \tau v w / \tau \rightarrow lvv \& had. tag$

- M^{2}_{miss} to measure $B \rightarrow D^{(*)} | v$
 - $M^{2}_{miss} = [p(e^{+}e^{-}) p(B_{tag}) p(D^{(*)}) p(I)]^{2}$
- Transformed neural network output (O'_{NB}) to measure $B \rightarrow D^{(*)} \tau v$
 - Powerful input: sum of ECL energy not used for signal reconstruction (E_{ECL})

Belle 2015

16

PRD92, 072014 (2015)

$B \rightarrow D^* \tau v w / \tau \rightarrow \pi / \rho v \& had. tag$

Belle 2017

Analysis w/ τ hadronic decays $\rightarrow \tau$ polarization

PRLI18, 211801 (2017), PRD97, 012004 (2018)

The first measurement of P_{τ} (D^{*}) : < +0.5 (90% C.L.)

$B \rightarrow D^{(*)} \tau v w / \tau \rightarrow lvv \& s.l. tag$

- More background due to additional v
 - Signal/normalization modes are separated by $cos \theta_{B\text{-}D^{*}I}$
- Belle 2019 analysis is featured by;
 - Simultaneous extraction of R(D) and R(D*)
 - Both B⁰ and B⁺
 - Analysis with the Belle II framework with FEI (Full Event Interpretation, multivariate analysis with the BDT classifier) to improve the efficiency.

Belle 2019

 $\cos \theta_{B,D^{(*)}\ell} \equiv \frac{2E_{\text{beam}}E_{D^{(*)}\ell} - m_B^2 - m_{D^{(*)}\ell}^2}{2|p_B||p_{D^{(*)}\ell}|}$

PRL124, 161803 (2020)

arXiv: 1910.058642

$B \rightarrow D^{(*)} \tau v by Belle$

World average (HFLAV) $R(D) = 0.339 \pm 0.026 \pm 0.014$ $R(D^*) = 0.295 \pm 0.010 \pm 0.010$ $R(D) = 0.325 \pm 0.034$ $R(D^*) = 0.283 \pm 0.018$

Consistent with SM within 1.6σ

Prospects for $B \rightarrow D^{(*)} \tau v$ at Belle II

- Statistical error will be further reduced by luminosity and also by improved tagging with the FEI (Full Event Interpretation) algorithm with Fast BDT and more decay modes.
- Reduction of systematic errors become more important.

14

Composition of the systematic uncertainties in each Belle analysis				
	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}$
$B \to D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}$
"The Belle II Physics Book", arXiv:1808.105				

Prog. Theor. Exp. Phys. 2019, 123C01

- The uncertainty due to the MC statistics is reducible.
 - MC stat affects the estimation of the reconstruction efficiency, understanding of small cross-feed components and PDFs for the fit.
- The uncertainties from Br(B→D**Iv) decays and hadronic B decays have to be reduced by dedicated measurements of the background decays.

Prospects for $B \rightarrow D^{(*)} \tau v$ at Belle II

Belle II will lead the exploration of $R(D^{(*)})$ in the next decade

LFUV in $b \rightarrow s I^+I^-$

• In SM, the coupling constants of each generation leptons with Z/ γ are identical (Lepton Flavor Universality). i.e.,

$$\rightarrow R_{K^{(*)}} \equiv \frac{\mathcal{B}(B \rightarrow K^{(*)} \mu^{+} \mu^{-})}{\mathcal{B}(B \rightarrow K^{(*)} e^{+} e^{-})} \approx 1(SM)$$

with very high accuracy

- LHCb has reported anomalies in $B^+ \rightarrow K^+ I^+ I^-$, $B^0 \rightarrow K^{*0} I^+ I^-$, and more recently $B^0 \rightarrow K_S^0 I^+ I^-$, $B^+ \rightarrow K^{*+} I^+ I^-$, all indicating R < I.
 - Also in $\Lambda_b \rightarrow pKI^+I^-$
 - Angular observables (P5') in K*I+I- also deviates from SM, although it suffers from hadronic uncertainties.

R_K^* measurements at Belle

PRL126, 161801 (2021) arXiv:1904.02440

R_K^* results from Belle

PRL126, 161801 (2021) arXiv:1904.02440

R_K measurements at Belle

JHEP 2103, 105 (2021) arXiv:1908.01848

R_K results from Belle

JHEP 2103, 105 (2021)

arXiv:1908.01848

20

Progress in Belle II

• Exclusive: preliminary measurements using Belle II early data (62.8 fb⁻¹)

Ns = 9.6
$$^{+4.3}_{-3.9} \pm 0.4$$

(2.70 significance)
Not sufficient to extract
key observables

- Inclusive: $B \rightarrow X_s I^+I^-$ simulation
 - Complementary to B→K(*)I+I- with different hadronic uncertainties
 - Two methods explored:
 - Sum of exclusive modes
 - Fully inclusive using tagging

Prospects for R_{K,K*,Xs} at Belle II

- Clean e⁺e⁻ environment make easier;
 - Bremsstrahlung energy recovery for electrons
 - Measurements in the high q^2 region
 - Inclusive measurements (R_{Xs})
- Still statistics limited at 50ab-1
 - Primary systematic error comes from lepton ID (~0.4%)
- Discovery sensitivity
 - ~ $10ab^{-1}$ for $R_K + R_{K^*}$ combined
 - ~20ab⁻¹ for RXs

Belle II data with >5/ab will be complementary and essential to check the presence of the effect claimed by LHCb

• Then correlation between R_{K,K^*,X_s} as well as other observables (angular distributions etc.)

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab ⁻¹
R_K ([1.0, 6.0] GeV ²)	28%	11%	3.6%
$R_K (> 14.4 \text{GeV}^2)$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
$R_{K^*} (> 14.4 \text{GeV}^2)$	24%	9.2%	2.8%
$R_{X_{\rm x}}$ ([1.0, 6.0] GeV ²)	32%	12%	4.0%
R_{X_s} (>14.4 GeV ²)	28%	11%	3.4%

Prog. Theor. Exp. Phys. 2019, 123C01

Summary

- The deviations found in the LFU observables, R_{D, D*}, R_{K,K*}, need be clarified with higher accuracy. If confirmed, they could be clues for New Physics.
- The results for R_{D, D^*} , R_{K, K^*} from Belle are consistent with SM within the present errors.
- Belle II will be able to provide results with higher accuracies
 - Systematics different from measurements at LHC.
 - More information from other observables, distributions, also in inclusive measurements.
- Plan/prospect of the SuperKEKB/Belle II
 - L ~ Belle by long shutdown I (LSI), currently scheduled from January 2023,
 → many world-leading physics results.
 - Reach 50ab⁻¹ goal by ~2031 after modification of SuperKEKB/Belle II components in LS2 (around 2026).

Target scenario: extrapolation from early 2021 run including expected improvements

Base scenario: conservative extrapolation of SuperKEKB parameters from early 2021 run

If SuperKEKB performance indicates that insufficient integrated luminosity will be collected before LS1 or COVID-19 travel restrictions persist, the option exists to postpone the start of LS1 to July 2023

Backup Slides

