

Belle II status and perspectives Chengping Shen for the Belle II Collaboration shencp@fudan.edu.cn

Workshop on double charm tetraquark and other exotics Nov. 22-23, 2021, Lyon

Outline

- Introduction to the Belle II experiment
- Belle II potential in the charmonium region
- Belle II potential in the bottomonium region
- Summary

Introduction to the Belle II experiment

Belle II operates at SuperKEKB at KEK in Tsukuba, Japan

Designed \mathscr{L} : 6 imes 10 35 cm $^{-2}$ s $^{-1}$

Achieved so far:

 $\mathrm{3.1}\times\mathrm{10^{34}\ cm^{-2}s^{-1}}$

Belle II at high intensity frontier:

Search for BSM physics

Precisely measure SM parameters

Very rich physics topics:

- Semileptonic & Missing Energy B Decays
- Radiative & Electroweak Penguin B Decays
- Time Dependent CP Violation
- Hadronic B Decays to Charmless
- Hadronic B Decays to Charm

Bottomonium & Charmonium

Charm Physics & au Physics

Low Multiplicity Physics & Dark Sector Physics

For details, please see PTEP 2019, 123C01 The Belle II Physics Book

Introduction to the Belle II detector K. R. Nakamura, talk at TIPP2021 (2021);

R. Nakamura, talk at TIPP2021 (2021); BELLE2-NOTE-PL-2020-014; BELLE2-NOTE-PL-2020-027.

Drift chamber (*p*, PID)

- Longer lever arm than Belle
- Smaller cell size than Belle

eff. × accept. \geq 0.8 (for $p_T > 1 \text{ GeV}/c$)

PID detectors (K/π separation)

- Barrel: Time-Of-Propagation counters
- Endcap: Aerogel RICH
- Wrong PID: x0.5 smaller than Belle

 $\epsilon_K^{\text{average}} \gtrsim 0.8 \text{ (for all } p \text{ region)}$

EM calorimeter (E_e, E_{γ})

• CsI(Tl) + wave-form sampler

 $\epsilon_{e^\pm}\approx 94\%$, wrong $h^\pm \to e^\pm$ ID $\approx 2\%$

K_L^0/μ detector

- Outer barrel: RPC (streamer mode)
- Endcap, inner barrel: Sci. + WL shifter

 $\epsilon_{\mu^{\pm}} \approx 90\%$, wrong $h^{\pm} \rightarrow \mu^{\pm}$ ID $\approx 4\%$

Belle II luminosity plan

Long Shutdown 1 (LS1) is currently scheduled to start January 2023

Exotic candidates

Hadro-quarkonium

- Many different processes to study the exotic states
- Full event reconstruction, decays with neutral/soft particles
- Nominal at Y(4S), potential to reach ~11 GeV

Tetraquark

Nature Reviews Physics 1, 480 (2019)

Pentaquark

What is X(3872)?

• A $D^0\overline{D}^{*0}$ molecular

Various models predict $Br(X \rightarrow J/\psi \pi^+\pi^-) < 10\%$ (PRD 72, 054022 (2005), PRD 69, 054008 (2004), Chin.Phys. C43 12, 124107 (2019))

- Mixture of $D^0\overline{D}^{*0}$ and $\chi_{c1}(2P)$ bound state Br(X $\rightarrow J/\psi\pi^+\pi^-$) < 20% (PLB 702, 359 (2011))
- Tetraquark model Br(X \rightarrow J/ $\psi\pi^{+}\pi^{-}$) ~ 50% (PRD 71, 014028 (2005))

• $\chi_{c1}(2P)$

 $Br(X \rightarrow \gamma J/\psi) \sim 0.6\%, Br(X \rightarrow \gamma J/\psi) \sim 3.5\%$ (PRD 69, 054008 (2004))

Absolute Brs of X(3872) from BaBar PRL 124, 152001 (2020)

- If more than one B candidate is found in an event, all candidates are retained to avoid the best one was not the correct one, including those where it belonged to the signal side.
- For the X(3872), the efficiency gains up to a factor of 3.

Absolute Brs of X(3872) from BaBar PRL 122, 222001 (2019)

Particle	Yield	$\mathcal{B}(10^{-4})$	N_{σ}
J/ψ	2364 ± 189	10.1 ± 0.29 (Ref. [21])	10.4
η_c	2259 ± 188	$9.6 \pm 1.2(\text{stat}) \pm 0.6(\text{syst})$	9.3
χ_{c0}	287 ± 181	$2.0 \pm 1.3(\text{stat}) \pm 0.3(\text{syst})$	1.6
χ_{c1}	1035 ± 193	$4.0 \pm 0.8(\text{stat}) \pm 0.6(\text{syst})$	2.2
χ_{c2}	200 ± 164	< 2.0	1.2
$\eta_c(2S)$	527 ± 271	$3.5 \pm 1.7(\mathrm{stat}) \pm 0.5(\mathrm{syst})$	2.3
ψ'	1278 ± 285	$4.6 \pm 1(\text{stat}) \pm 0.7(\text{syst})$	3.1
$\psi(3770)$	497 ± 308	$3.2 \pm 2.0(\text{stat}) \pm 0.5(\text{syst})$	1.2
X(3872)	$\underline{992 \pm 285}$	$2.1 \pm 0.6(\text{stat}) \pm 0.3(\text{syst})$	3.0

- $\mathcal{B}[X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}] = (4.1 \pm 1.3)\%$
- The measurement therefore suggests that the X(3872) has a significant molecular component.
- At Belle II, we need improve the measurements related to X(3872) decays [reduce the background level; improve B tagging efficiency]

B tagging at Belle II

arXiv: 1807.08680 [hep-ex] Comput. Softw. Big Sci. 3 (2019) 1, 6

- **Identify** *BB* by reconstructing one of them
 - **Isolate** B_{tag}

Information

- B_{taa} information constrains B_{sia}
- Always a trade-off between **efficiency** and **information** (incl. **purity**, signal-side kinematic **resolution**, etc.)
- In Belle II, Full Event Interpretation (FEI):
 - \circ Hierarchical reconstruction of ~10,000 decay modes
 - Extensive use of machine learning
 - Semileptonic and hadronic tag modes
 - Increase in **efficiency**, comparable **purity**

efficiency increases by 30-50% compared with conventional tagging B_{sig}

Efficiency ϵ

The X(3872) width: sensitivity

- X(3872) width has been measured by LHCb [PRD 102, 092005 (2020); JHEP 08, 123 (2020)]. PDG average value: 1.19±0.21 MeV
- Using the $B \rightarrow (D^0 \overline{D}{}^0 \pi^0) K$ data can significantly improve the mass resolution (near-threshold decay), and, consequently, the total-width sensitivity.
- The sensitivity has been estimated on MC

Reconstruction of $B \rightarrow KX(3872)$, $X(3872) \rightarrow \pi^+\pi^- J/\psi$

- A new resonance X(3872) was first reported by Belle in 2003 by reconstructing $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decay.
- We reconfirmed evidence for X(3872) in Belle II data with 4.6σ significance.

Search for X(3872) partner in bottomonium X_b

The peak in $M(\omega \Upsilon(1S))$ comes from $e^+e^- \to \omega \chi_{bJ}, \ \chi_{bJ} \to \gamma \Upsilon(1S)$ $\mathcal{B}(\Upsilon(10860) \to \gamma X_b) \mathcal{B}(X_b \to \omega \Upsilon(1S)) < (2.6 - 3.8) \cdot 10^{-5}$ btw. 10.55 and 10.65 GeV X.H. He et al., Phys. Rev. Lett. 113, 142001 (2014)

• At Belle II, with larger data samples at Y(5S) and higher resonance, we will continue such search.

(2008).)

M ($\chi_{c1}\pi^+$), GeV/c²

Only the $Z_c(4430)^+$ is confirmed (seen by Belle and LHCb), it is studied relatively well now. Other charged charmoniumlike states observed in *B* decays are not confirmed; the analyses were performed either only at Belle or only at LHCb.

Potential for charged states from B decays

- 1. Updated amplitude analysis of $\overline{B}^0 \to \psi(2S)\pi^+K^-$: confirmation of the LHCb observation of the resonant character of the $Z_c(4430)^+$, confirmation of the $Z_c(4240)^+ / R_{c0}(4240)^+$.
- 2. Confirmation of the $W_{c0}(4100)^+$ in $ar{B}^0 o \eta_c \pi^+ K^-$
- 3. Amplitude analysis of $\bar{B}^0 \rightarrow \chi_{c1} \pi^+ K^-$, measurement of the $Z_c(4050)^+$ and $Z_c(4250)^+$ quantum numbers.
- 4. Search for the neutral partners of all charged charmoniumlike states observed in *B* decays.
- 5. Amplitude analyses of unexplored channels, for example $\bar{B}^0 \rightarrow X(3872)\pi^+K^-$.
- 6. Search for the $Z_c(3900)^+$ in $\bar{B}^0 \rightarrow J/\psi \pi^+ \pi^- K^+$.
- 7. Search for decays of charged charmoniumlike states to $D^{(*)}\overline{D}^{(*)}$ in $B \to D^{(*)}\overline{D}^{(*)}K$.

Can be done at Belle II and LHCb. Belle II has a good sensitivity for neutral partners.

Potential for neutral states from B decays

- 1. Amplitude analysis of $B \rightarrow J/\psi \phi K$, confirmation of 4 states observed by LHCb.
- 2. Amplitude analysis of $B \rightarrow J/\psi \omega K$, measurement of the X(3915) quantum numbers in B decays.
- 3. Updated search for $B \to Y(4260)(\to J/\psi\pi^+\pi^-)K$ and other $J^{PC} = 1^{--}$ charmoniumlike states.
- 4. Amplitude analyses of unexplored channels with a J/ψ such as $B \rightarrow J/\psi \eta K$ or $B \rightarrow J/\psi \eta' K$.
- 5. Analyses of the above channels with K_S^0 .
- 6. Search for decays of known charmoniumlike states to other final states, for example, $X(3915) \rightarrow \eta_c \eta$ (X(3915) should decay to this channel if it is a $c\bar{c}s\bar{s}$ state).
- 7. Absolute branching fractions for $B \to X(3872)K$, $B \to X(3915)K$. Can be done at Belle II and LHCb. Absolute branching fractions are unique for Belle II!

$e^+e^- \to \pi^+\pi^- J/\psi$ via initial-state radiation at Belle II

- ISR technique can explore J^{PC} = 1⁻⁻ states far away from e⁺e⁻ collision energy.
- The whole hadron spectrum is visible.
- The effective luminosity and detection efficiency are relatively low.

For $e^+e^- \rightarrow \pi^+\pi^-J/\psi(\rightarrow \mu^+\mu^-)$ via ISR at Belle II

- Rediscover the first Y state at Belle II
- Identify existences of the Y(4008) and Y(4320) in M($\pi^+\pi^- J/\psi$)
- Minimize the statistical errors.
- Study the properties of charged charmonium-like state $Z_c(3900)$.

Control samples of $\psi(2S) \rightarrow \pi^+\pi^-J/\psi$ via ISR

Mode	Our measurements	Theoretical calculation [Yad. Fiz. 41, 733 (1985)]	
$J/\psi \to \mu^+\mu^-$	(12.0 ± 1.2) pb	(14.1 ± 0.3) pb	
$J/\psi \to e^+e^-$	(13.0 ± 1.2) pb		

- Further PID and tracking corrections at Belle II are needed.
- The numbers of the expected Y(4260) signal events in data are (12.5 \pm 2.3) and (10.6 \pm 1.8) for J/ $\psi \rightarrow \mu^+\mu^-$ and J/ $\psi \rightarrow e^+e^-$.
- Next step is Y(4260) rediscovery. Expecting ~60 total events per 100 fb⁻¹

Charmonium in ISR: can be done

- Comparable samples for e.g. $e^+e^- \rightarrow J/\psi \pi^+\pi^-$.
- Access to high energy region
- Data are accumulated at the same time for all energies - simplifies lineshape analysis.
- 1. Improved measurements and fits of $e^+e^- \rightarrow \gamma_{\text{ISR}}(c\bar{c})(X)$ cross sections.
- 2. Improved measurements and fits of the open-charm cross-sections, for example $e^+e^- \rightarrow \gamma_{\rm ISR}D^{(*)}\bar{D}^{(*)}(X)$
- 3. Measurements of higher mass open-charm channels, for example $e^+e^- \rightarrow \gamma_{\rm ISR} \Sigma_c^+ \overline{\Sigma}_c^-$.
- 4. Analyses of the channels that are currently studied at BESIII only, for example $e^+e^- \rightarrow h_c \pi^+\pi^-$ with confirmation of the $Z_c(4020)^+$. Can be done at Belle II and BESIII with direct production.

Other productions for charmonium-like states

Sev

Belle, PRL 96 082003 (2006)

yy→Z(3930)→DD

 $2^{3}P_{2}(\chi_{c2}')$

Belle, PRL98, 082001 (2007

4.10 4.15

m (ω J/ψ) (GeV) Belle,PRL 104, 112004 (2010)

4.05

yy→Y(3940)→J/Ψω

M(DD) (GeV/c²

4.20

BaBar, PRD81 092003 (2010)

 $m(D\overline{D})$ [GeV/c²]

LHCb

Belle, PRD95, 112003 (2017

 $e^+e^- \rightarrow I/\psi D\overline{D}$

LHCb, PRD 95, 012002(2017

7) 35 WeV/c 30

Entries / 10

15 10

0

Events / 50 MeV/c

3.8

Two photon processes Study of $\chi_{c2}(3930)$ using $\gamma\gamma \rightarrow Z(3930) \rightarrow DD$ Mass and width precision study.

X(3915) (thought to be $\chi_{c0}(2P)$)was discovered in two photon process. Currently, $\chi_{c0}(2P)$ has been suggested to be recently found X(3860) in J/ $\psi D\overline{D}$.

Belle observed X(4350) in $\gamma\gamma \rightarrow J/\psi\phi$. Recently, LHCb did amplitude analysis of $B \rightarrow J/\psi\phi K$, found several structures Y(4140), Y(4274), X(4500), X(4700) but not X(4350) (?) Belle II should revisit with more data.

 $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ cross sections and Y(10750)

Scan data: 22 points, each point 1fb^{-1} Y(10860) on-resonance data: 121 fb⁻¹, between 10.864 and 10.868 GeV Continuum data at 10.52 GeV, 60 fb⁻¹

global significance: 6.7 o

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 ^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({\rm MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0+0.7}_{-6.8-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

 $\Gamma_{ee} \times \mathcal{B}$ (in eV) a range due to multi-solutions

	Ύ(10860)	Ύ(11020)	new
$\Upsilon(1S)\pi^+\pi^-$	0.75 - 1.43	0.38 - 0.54	0.12 - 0.47
$\Upsilon(2S)\pi^+\pi^-$	1.35 - 3.80	0.13 - 1.16	0.53 - 1.22
$\Upsilon(3S)\pi^+\pi^-$	0.43 - 1.03	0.17 - 0.49	0.21 - 0.26

- Could there be a Z_b enhancement?
- Could it be Y(3D) bottomonium or a tetraquark?
- Near B^(*)B^{*}π threshold regions

Belle II is taking data at 10.75 GeV !

$e^+e^- \rightarrow b\overline{b}$ cross sections and Y(10750)

X. K. Dong, X. H. Mo, P. Wang, C. Z. Yuan, Chin. Phys. C 44, (2020) 083001

A dip at 10.75 GeV in $e^+e^- \rightarrow b\overline{b}$ cross sections. Similar to Y(4260).

Interpretation of the Y(10750)

- D-wave bottomonium
 - B. Chen, A.L. Zhang, J. He, arXiv:1910.06065, Bottomonium spectrum in the relativistic flux tube model (3D)
 - Q. Li, M.S. Liu, Q.F. Lü, L.C. Gui, X.H. Zhong, arXiv:1905.10344, Canonical interpretation of Y(10750) and Y(10860) in the Y family (4D)
- $\overline{B}^{(*)}B^{(*)}$ dynamically generated pole
 - P. Bicudo, M. Cardoso, N. Cardoso, M. Wagner, arXiv:1910.04827, Bottomonium resonances with I=0 from lattice QCD correlation functions with static and light quarks
- Hybrid
 - J. T. Castellà, arXiv:1908.05179, Spin Structure of heavy-quark hybrids
- Tetraquark state
 - A. Ali, L. Maiani, A. Y. Parkhomenko, W. Wang, arXiv:1910.07671, Interpretation of Yb (10753) as a tetraquark and its production mechanism
 - Z.G. Wang, arXiv:1905.06610, Vector hidden-bottom tetraquark candidate: Y(10750)

Belle II potential in the Bottomonium region

- Run at Y(6S) and Y(5S) and high energy scan:
 - · Search for new, predicted, resonances such missing bottomonia, exotic states,
 - · Improve precision of already known process and states: e.g. Zb's,
 - Measure the effect of the coupled channel contribution,
 - Study $B^{(*)}\overline{B}^{(**)}$ and $Bs^{(*)}\overline{B}s^{(**)}$ threshold regions (challenging for Super-KEKb).
- Run at Y(3S) and Y(2S):
 - · Search for missing $\pi\pi/\eta$ transitions to constrain further theoretical models,
 - Search for new physics: LFV, LFU, new scalars...

Future plan at Bottomonium region

- Main focus to collect Y(4S) on-peak data.
- Upcoming non-Y(4S) plans (Nov 2021):
 - · 10.751 GeV (10 fb⁻¹): to study $Y_b(10753)$ on-peak,
 - 10.657, 10.706, 10.810 (1+2+3 fb⁻¹): additional points for BB decomposition.
- 9 month upgrade, then data taking till 2026, expected O(10 ab⁻¹).
- After upgrade: 11 GeV (30 fb⁻¹): to study Y(6S) on-peak.
- Future proposals: options for larger Y(6S), Y(3S), Y(5S) datasets.

the energy scan is happening now, and by the time of the talk, is almost complete.

Summary

- The expected Belle II data sample of 50 ab⁻¹ will provide a lot of new opportunities for physics analyses in the area of exotic states
- Some of them, such as double charmonium production, twophoton processes, bottomonium physics, absolute branching fractions, have advantages for Belle II.
- Several quarkonium(-like) states and exclusive B decays to charmonium and other particles were "rediscovered" using the currently available data.
- More exciting results are expected with larger data sample in the near future. Thanks a lot!

Thanks for your attention

沈成平

shencp@buaa.edu.cn

Tracking Detector Performance

Momentum resolution δ_{p_T}

Estimated using cosmic rays.

(preliminary) $\boldsymbol{\delta}_{p_{\mathrm{T}}} = (0.127 p_{\mathrm{T}} (\mathrm{GeV}/c^2) \oplus 0.321)\%$

Vertex Detector Performance

Lepton Identification

$e^\pm ext{-ID}$ and $\mu^\pm ext{-ID}$ efficiencies ϵ_ℓ and mis-ID rate $w_{m{h} o\ell}$

Demonstration: $J/\psi \rightarrow e^+e^-(\gamma)$, $\mu^+\mu^-$ reconstruction

A clear peak is observed at the $m_{J/\psi}$ position.

K/π Separation

Quasi K/π tagging

Update cross sections of $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$ Belle, JHEP 1910, 220 (2019)

Black error bars: statistical Red error bars: uncorrelated systematic errors Structure at 10.75 GeV is more significant

Fits to energy dependent cross sections $|\mathrm{BW}_{\Upsilon(5\mathrm{S})}^{(\mathrm{n})} + \mathrm{e}^{\mathrm{i}\alpha_{\mathrm{n}}} \mathrm{BW}_{\Upsilon(6\mathrm{S})}^{(\mathrm{n})} + \mathrm{e}^{\mathrm{i}\beta_{\mathrm{n}}} \mathrm{BW}_{\mathrm{new}}^{(\mathrm{n})} + \mathrm{e}^{\mathrm{i}\gamma_{\mathrm{n}}} \mathrm{BW}_{\Upsilon((\mathrm{n}+1)\mathrm{S})}^{(\mathrm{n})}|^{2} \otimes \mathrm{Gaussian}$ $F_{BW}(s, M, \Gamma, \Gamma_{ee}^{0} \times \mathcal{B}_{f}) = \frac{\sqrt{12\pi \Gamma \Gamma_{ee}^{0} \times \mathcal{B}_{f}}}{s - M^{2} + iM\Gamma} \sqrt{\frac{\Gamma_{f}(s)}{\Gamma_{f}(M^{2})}}$

Simultaneous fit to three channels with some common parameters.

Free parameters: Mass M, width Γ , product of partial width and branching fraction $\Gamma_{ee}B(\pi\pi\Upsilon)$, relative phase ϕ .

ISR characteristics

The distributions from data and signal MC are compatible, which are all consistent with ISR characteristics.

