Measurements of CKM Parameters at Belle II

Chaoyi Lyu (On behalf of the Belle II Collaboration)

International Conference on Precision Physics and Fundamental Physical Constants 2021

chaoyi_lyu@uni-bonn.de

7 October, 2021

CKM matrix and unitarity triangle

Status

X Tension of $|V_{cb}|$ and $|V_{ub}|$ measurements between inclusive and exclusive processes.

% Status of sin($2\phi_1$), ϕ_2 and ϕ_3 measurement

Precision of angles and sides of the unitarity triangle is an important test for the standard model.

The Belle II detector

Vertex detector (VXD) Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD) Vertex resolution : 15 µm

Central Drift Chamber (CDC)

e⁻(7GeV)

Track efficiency ~ 99% dE/dx resolution : 5% p_T resolution : 0.4 %

ElectroMagnetic Calorimeter (ECL)

Barrel: CsI(TI) + waveform sampling Endcap: waveform sampling Energy resolution : 1.6 - 4%

Features:

Energy-asymmetric e^+e^- collider \rightarrow low background.

Highest luminosity $(3.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1})$ in the world.

Particle Identification

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH)

Target:

Collect more than 50 ab⁻¹ data; 700 *BB* pairs/second **Currently:** 213.5 fb⁻¹ data are collected.

K_{L/μ} detector (KLM) Outer barrel: Resistive Plate Counter (RPC) Endcap/inner barrel: Scintillator

B decay reconstruction

- Collide e⁺ and e⁻ at the threshold energy (10.58 GeV) to make Y(4S) particles
- Y(4S) decays to B^+B^- and $B^0B^0 > 96\%$ of the time.
- Untagged approach:
 - Reconstruct signal first.
 - Inclusively sum over all tracks and clusters in remaining event or use only signal side information
 - High efficiency but large background
- Tagged approach:
 - Reconstruct one B meson as tag-side (B_{tag})
 - Study remaining B meson as signal (B_{sig})
 - Flavour and kinematic constraints: $B_{tag} \Rightarrow B_{sig}$

Full Event Interpretation (FEI)

Advanced tagging technique

The FEI uses a **multivariate technique** to reconstruct the B-tag side (hadronic' or semileptonic) through $O(10^3)$ decay modes in a Y(4S) decay.

Tagging efficiency of FEI (evaluated on Belle MC) ϵ_{tag} for had.: 0.78%(B⁺), 0.46%(B⁰) ϵ_{tag} for SL: 1.80%(B⁺), 2.04%(B⁰) Comput Softw Big Sci (2019) 3: 6

Had. tagging with Belle II data

arXiv:2008.06096

Determine the correctly reconstructed tag-side yield by fitting $m_{bc} = \sqrt{E_{beam}^2/4 - p_{B_{tag}}^{*2}}$.

6

Inclusive |V_{cb}| measurement

 Measure the spectral moments (moments of lepton energy or hadronic mass) in order to simultaneously determine the non-perturbative elements and |V_{ab}|. Details about this approach: <u>JHEP02(2019)177</u>

Exploit missing mass and momentum to reject backgrounds.

Obtained BF(B \rightarrow X_c ℓ v): (9.75±0.03_{stat}±0.47_{sys})% Main source: the knowledge of B \rightarrow X_c ℓ v composition. Measure the first six hadronic mass moments.

Next: $|V_{cb}|$ extraction from $q^2 = (p_B - p_X)^2$ moments.

Exclusive |V_{cb}| measurement

Untagged $B^0 \rightarrow D^* \ell^+ v$

Untagged $B^- \rightarrow D^0 \ell^- v$

Hadronically tagged $B^0 \rightarrow D^{*-}\ell^+ v$

8

Inclusive |V_{ub}| measurement

- Challenge in the measurement of $B \rightarrow X_{\mu} \ell v$:
 - large background from b→c events
- To suppress charm decay, exploit the lepton momentum endpoint, where b→c component is relatively small
- Analysis strategy:
 - select one well-identified electron
 - extract signal yield by fitting electron momentum in the center-of-mass frame
- Background substracted distribution is consistent with $B \rightarrow X_{\mu} \ell v$ prediction. The significance of the yield is 3σ .

Capable of measuring $|V_{ub}|$ with more data.

e $b \rightarrow c$ Charged Lepton p_l Momentum

BELLE2-NOTE-PL-2020-026

Exclusive |V_{ub}| measurement

BELLE2-CONF-PH-2021-013

Hadronically tagged $B \rightarrow \pi \ell v$

Hadronically tagged $B \rightarrow \rho \ell v$

- All branching ratios are in agreement with PDG values.
- Untagged exclusive |V_{ub}| measurement is also on-going.

Measurement of $sin(2\phi_1)$

 $\Upsilon(4S)$

Boost

e

B

et

B_{CP}

 J/ψ

 K_S

 $B_{\rm tag}^0$

 \overline{B}_{tag}^0

6

8

Toward ϕ_2

Unique Belle II capability to study all the $B \rightarrow \pi \pi$, $\rho \rho$ partner decays to determine ϕ_2

B⁰→ $\pi^0\pi^0$: very challenging because four γ's. Train BDT to suppress background photons. 3D fit of ΔE-Mbc-continuum suppression BDT. Unique Belle II reach.

 $\mathfrak{B}(B^0 \rightarrow \pi^0 \pi^0) = (0.98^{+0.48}_{-0.39} (\text{stat}) \pm 0.27 (\text{syst})) \times 10^{-6}$

arXiv:2107.02373

 $B^+ \rightarrow \rho^+ \rho^0$: π -only final state, large background because of ρ mass width. Additional challenge of angular analysis \rightarrow 6D fit including helicity angles.

20% precision improvement wrt Belle on the same lumi!

On track to measure the CKM angle ϕ_2 at Belle II

Toward ϕ_3

important set of observables:

$$\begin{aligned} R^{(*)0} &= \frac{\Gamma(B^- \to D^{(*)0}K^-)}{\Gamma(B^- \to D^{(*)0}\pi^-)} \\ R^{(*)+} &= \frac{\Gamma(\bar{B}^0 \to D^{(*)+}K^-)}{\Gamma(\bar{B}^0 \to D^{(*)+}\pi^-)} \end{aligned}$$

 $\frac{\mathcal{A}^{\text{suppr.}}(B^- \to \overline{D^0} K^-)}{\mathcal{A}^{\text{favor.}}(B^- \to D^0 K^-)} = r_B e^{i(\delta_B + \phi_3)}$

The most sensitive mode to determine
$$\mathbf{\phi}_3$$

$$B^- \to D^0 (K^0_{\rm S} \pi^+ \pi^-) K^-$$

for this mode, fit not only ΔE but also the output from fast boosted decision tree

arXiv:2104.03628

Expect 1.6° precision on ϕ_3 with 50 ab⁻¹ dataset.

Summary and prospects

- Precision measurement of CKM parameters is a keystone of Belle II program
- Intensive activity ongoing on early data to prepare measurements of UT angles and sides
- Preliminary results are reported based on 30-60/fb on BF for determining |Vcb| and |Vub|, sin(2 ϕ_1), B \rightarrow DK parameters sensitive to ϕ_3 , and B $\rightarrow \pi^0 \pi^0 / \rho^+ \rho^0$ parameters sensitive to ϕ_2

Backup

Comparison with LHCb

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹)	~25	~50,000
Background level	High	Low
Typical efficiency	Low	High
π^0 , K_S efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Good
Collision spot size	Large	Tiny
Heavy bottom hadrons	B_s, B_c, b -baryons	Partly B _s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%