

Belle II: status and prospects

NUCLEUS-2021

Peter M. Lewis on behalf of the **Belle II collaboration**

UNIVERSITÄT BONN

Standard Model

Decades of precision tests

- Enormous progress on measuring parameters and verifying predictions
- But SM is **not complete**
 - Ongoing search for **BSM physics**
- **Direct** production at **energy frontier** has yielded no unambiguous evidence
 - \circ ~ Nothing from ATLAS, CMS...

But *indirect* searches at the **intensity frontier** have uncovered intriguing **flavor anomalies**...

Flavor anomalies

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

$$(\ell = e, \mu)$$

Flavor anomalies

Flavor anomalies

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^{-}\bar{\nu}_{\ell})}$$
$$(\ell = e, \mu)$$

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$$

Other $b \rightarrow s\ell\ell$ anomalies in angular observables. **Global tension may be over** 5σ

A coherent picture is emerging... lots of excitement! Need more data...

Intensity frontier

More data to confirm anomalies

- These anomalies are seen in rare *B* meson decays
- We need **huge**, **pure** collections of *B* **mesons...**
- At the *B* Factories, a pair of *B* mesons is produced in "clean" events $e^+e^- \rightarrow \Upsilon(4S) \rightarrow \overline{BB}$
 - BaBar (1999-2008): 433 fb⁻¹ (470M *BB*)
 - Belle (1999-2010): 711 fb⁻¹ (771M *BB*)
- LHCb (current) is largely **complementary**

A luminosity upgrade to Belle...

0.5 -0.5

SuperKEKB

Upgrade to KEKB

- Asymmetric e^+e^- collider at 10.58 GeV [Υ (4S)]
- Largely accomplished via nanobeam scheme \circ $\sigma_v^*: 940 \rightarrow \sim 50 \text{ nm}$

7

Luminosity

Plan and records

- Goal: **50ab**⁻¹ integrated (>50**Bn** $B\overline{B}$)
- Operating since 2018
- World record instantaneous luminosity set by $\sim 50\%$
 - \circ *Was*: **2.1**x10³⁴ cm⁻²s⁻¹
 - \circ Now: **3.1**x10³⁴ cm⁻²s⁻¹
- A long way to go!
- Will review some **early results** and **near-term prospects** today...

CERNCOURIER

ACCELERATORS | NEWS SuperKEKB raises the bar

22 August 2021

Record breaker The SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan. Credit: S. Takahashi / KEK

On 22 June, the SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan set a new world record for peak luminosity, reaching 3.1×10^{34} cm⁻² s⁻¹ in the Belle II detector. Until last year, the luminosity record stood at 2.1×10^{34} cm⁻² s⁻¹, shared by the

Luminosity plan

Belle II upgrades

Central beam pipe: decreased diameter from 3cm to 2cm (Beryllium)

Vertexing: new 2 layers of pixels, upgraded 4 double-sided layers of silicon strips

Tracking: drift chamber with smaller cells, longer lever arm, faster electronics

PID: new time-of-propagation (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: upgrade of electronics and processing with legacy CsI(Tl) crystals

 K_L and μ : scintillators replace RPCs (endcap and inner two layers of barrel)

Belle II physics program: not just flavor anomalies

Belle II physics program: not just flavor anomalies

B factory essentials

B factory essentials

Kinematics

Basics

- $p_{\gamma(4S)} = p_{e} + p_{e}$
- $\Upsilon(4S)$ frame (COM) is **static**
 - But **boosted** in lab frame
 - $B\overline{B}$ fly back-to-back in COM frame (p_T exaggerated in figure)
 - *B frame* is not *a priori* known
- Full kinematic reconstruction of a **single neutrino** is possible
- Boost allows for identification of **displaced** *B* **vertex**

Kinematics

Key metrics of kinematic consistency

• Beam constrained mass ($m_{\rm bc} = m_{\rm B}$ for correctly reconstructed B)

$$m_{
m bc} = \sqrt{E_{
m beam}^{\star 2} - \boldsymbol{p}_B^{\star 2}}$$

• *Energy difference* ($\Delta E = 0$ for correctly reconstructed *B*)

 $\Delta E = E_B^{\star} - E_{\rm beam}^{\star}$

• *Missing mass squared* $(m_{miss}^2 = 0$ if reconstruction is complete/correct except for a single **missing massless**)

B factory essentials

B tagging

Overview

- **Identify** $B\overline{B}$ by reconstructing one of them
 - **Isolate** B_{tag}
 - B_{tag} information constrains B_{sig}
- Always a trade-off between **efficiency** and **information** (incl. **purity**, signal-side kinematic **resolution**, etc.)
- In Belle II, **Full Event Interpretation** (FEI):
 - Hierarchical reconstruction of ~10,000 decay modes
 - Extensive use of machine learning
 - Semileptonic and hadronic tag modes
 - Increase in **efficiency**, comparable **purity**

 $B_{\rm sig}$

Continuum

- Copious production of $e^+e^- \rightarrow q\bar{q}$
- *BB* events are typically **spherical** while $q\bar{q}$ are typically more **back-to-back**
- *Continuum suppression* typically employs machine learning trained on many **event shape variables**
- **Tagging** can also substantially reduce continuum
- **Off-resonance** data used to describe and constrain continuum

$B \rightarrow K \nu \nu$

First *B*-physics paper at Belle II

- Search for **flavor-changing neutral current**
- Complementary probe to BSM from $b \rightarrow s\ell\ell$
- A channel **unique** to Belle II
- A new technique for this analysis: **inclusive tagging**
- Train signal classifier based on **event shape**
- Signal extracted from 2D fit in p_T vs. classifier bins

arXiv: 2104.12624

Search for $B^+ \to K^+ \nu \bar{\nu}$ decays using an inclusive tagging method at Belle II

F. Abudinén,⁴⁴ I. Adachi,^{21,19} K. Adamczyk,⁶⁶ P. Ahlburg,⁹⁸ H. Aihara,¹¹⁴ N. Akopov,¹²⁰ A. Aloisio,^{87,37} N. Anb Ky ^{34,12} D. M. Asner ² H. Atmacan ¹⁰⁰ T. Aushey ²³ V. Aushey ⁷⁹ A. Baur ¹⁰ V. Babu ¹⁰ S. Baehr ⁴⁸

$B \rightarrow K \nu \nu$

Results

- Results **competitive** with previous measurements despite **1/10th data**
- Statistically limited for now

arXiv: 2104.12624

Search for $B^+ \to K^+ \nu \bar{\nu}$ decays using an inclusive tagging method at Belle II

F. Abudinén,⁴⁴ I. Adachi,^{21,19} K. Adamczyk,⁶⁶ P. Ahlburg,⁹⁸ H. Aihara,¹¹⁴ N. Akopov,¹²⁰ A. Aloisio,^{87,37} N. Anb Ky ^{34,12} D. M. Asner ² H. Atmacan ¹⁰⁰ T. Aushey ²³ V. Aushey ⁷⁹ A. Baur ¹⁰ V. Babu ¹⁰ S. Baehr ⁴⁸

D^0 and D^+ lifetimes

Analysis

- Lifetimes of *D* mesons using:
 - $\circ \quad D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$
 - $\circ \quad D^{*+} \to D^+ (\to K^- \pi + \pi^+) \pi^0$
- Existing lifetimes are systematics-limited: a precision test of Belle II vertexing capabilities
 + knowledge of interaction region
- D^* decays at collision point; distance to *D* decay vertex gives lifetime
- Fit to time distribution with decaying exponential convolved with resolution function

D^0 and D^+ lifetimes

Results

Proper time resolution at Belle II is a factor of
 2 better than Belle and BaBar due to better vertexing

arXiv: 2108.03216 Precise measurement of the D^0 and D^+ lifetimes at Belle II

F. Abudinén,³¹ I. Adachi,^{21, 18} K. Adamczyk,⁶⁶ L. Aggarwal,⁷³ H. Ahmed,⁷⁶ H. Aihara,¹¹² N. Akopov,² A. Aloisio.^{88,25} N. Anh Kv.^{40,13} D. M. Asner.³ H. Atmacan.⁹⁹ V. Aushev.⁸¹ V. Babu.¹¹ S. Bacher.⁶⁶ H. Bae.¹¹²

 D^0 and D^+ lifetimes

arXiv: 2108.03216 Precise measurement of the D^0 and D^+ lifetimes at Belle II

F. Abudinén,³¹ I. Adachi,^{21,18} K. Adamczyk,⁶⁶ L. Aggarwal,⁷³ H. Ahmed,⁷⁶ H. Aihara,¹¹² N. Akopov,² A. Aloisio.^{88,25} N. Anh Ky.^{40,13} D. M. Asner.³ H. Atmacan.⁹⁹ V. Aushev.⁸¹ V. Babu.¹¹ S. Bacher.⁶⁶ H. Bae.¹¹²

Results

- First updates to D lifetimes in 20 years
- Provides important reference to LHCb charm lifetime measurements
- Still **statistics-limited**
- Vertex performance excellent: good sign for time-dependent mixing and CPV measurements

Axion-Like Particles

Concept

- **ALPs:** portal to dark sector
 - \circ Mediator or DM candidate
 - Light pseudoscalar interacting with SM gauge bosons
- Search using **445pb**⁻¹ of early data without complete detector
- Look for a **mono-energetic photon** recoiling against a **resonant photon pair**

PHYSICAL REVIEW LETTERS 125, 161806 (2020)

Search for Axionlike Particles Produced in e^+e^- Collisions at Belle II

F. Abudinén,⁴² I. Adachi,^{21,18} H. Aihara,¹¹⁵ N. Akopov,¹²¹ A. Aloisio,^{87,35} F. Ameli,³⁹ N. Anh Ky,^{32,11} D. M. Asner,² T. Auchay.²³ V. Auchay.²⁷ V. Baby.⁹ S. Bash.⁴⁶ S. Babininati.²⁵ P. Bambade.⁹⁶ Sy. Baneries.¹⁰⁵ S. Bansal.⁶⁸ I. Baudot.⁹⁷

Axion-Like Particles

Analysis

- Find three-photon events
- Two signatures in **EM calorimeter**:
 - Peak in mass recoiling against γ , or
 - Peak in $\gamma\gamma$ invariant mass

Axion-Like Particles

Results

- First-ever ALPs search at a *B* factory
- Already excluding **new parameter space** in region unconstrained by cosmological considerations
- More than one order of magnitude improvement on $g_{a\gamma\gamma}$ expected with **better stats**

PHYSICAL REVIEW LETTERS 125, 161806 (2020)

Search for Axionlike Particles Produced in e^+e^- Collisions at Belle II

F. Abudinén,⁴² I. Adachi,^{21,18} H. Aihara,¹¹⁵ N. Akopov,¹²¹ A. Aloisio,^{87,35} F. Ameli,³⁹ N. Anh Ky,^{32,11} D. M. Asner,² T. Auchay.²³ V. Auchay.²⁷ V. Baby.⁹ S. Bash.⁴⁶ S. Babininati.²⁵ P. Bambade.⁹⁶ Sy. Baneries.¹⁰⁵ S. Bansal.⁶⁸ I. Baudot.⁹⁷

Invisibly decaying Z'

Analysis

- Testing the L_{μ} - L_{τ} extension of the SM
 - New vector boson Z' that couples to SM only through μ , τ , v_{μ} , v_{τ}
 - Possible explanation for $(g-2)_{\mu}$, $b \rightarrow s\mu\mu$ anomalies and DM candidate
- First ever search for $Z' \rightarrow invisible$
 - Peak in mass recoiling against $\mu\mu$
 - Also search for **LFV** Z' with $e\mu$
 - \circ 276 **p**b⁻¹ of early data

Invisibly decaying Z'

Results

- New limits set
- Extension to (g-2)_µ region possible with 50fb⁻¹

Time-dependent CPV in *B* decays

The flagship *B* factory measurement

- SuperKEKB/Belle II **optimized** for this measurement
- *CP* asymmetries in **proper time** distribution of decays measure φ₁ (Unity Triangle angle)
- Look at BF asymmetry between tag and quantum-entangled CP eigenstate vs. time:
 - *Mixing frequency* from mass difference Δm_B
 - Mixing-induced asymmetries (indirect)
 - Direct CP asymmetries
- Some looks at early results...

$$\mathcal{A}_{f}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to \eta' K_{S}^{0}) - \Gamma(B^{0}(\Delta t) \to \eta' K_{S}^{0})}{\Gamma(\overline{B}^{0}(\Delta t) \to \eta' K_{S}^{0}) + \Gamma(B^{0}(\Delta t) \to \eta' K_{S}^{0})}$$
$$= S_{f} \sin(\Delta m_{B} \Delta t) + A_{f} \cos(\Delta m_{B} \Delta t)$$

Time-dependent CPV in *B* decays

 $B^0 \to D^- (K^+ \pi^- \pi^-) \pi^+$

• Observation of direct CP violation with 34.6fb⁻¹

• Obtain Δm_B

Time-dependent CPV in *B* decays

 $B^0 \to J/\psi (e^- e^+/\mu^- \mu^+) K_S$

- Assume no direct CPV
- Extract TD CPV parameter S_f with 2.7 σ significance
- Expect **factor of 5** improvement ultimately in CKM parameters ϕ_1 and ϕ_2

Toward $\rm V_{ub}$ and $\rm V_{cb}$

Semileptonic decays

- Semileptonic decays provide clean access to V_{ub} and V_{cb} CKM elements
- Two major current areas of excitement:
 - Excess in $R(D^{(*)})$: LFU implications
 - $\circ \quad \mbox{Inclusive/exclusive disagreement in} \\ |V_{ub}| \mbox{ and } |V_{cb}| \mbox{ at } 3.3\sigma \mbox{ level} \\ \label{eq:Vub}$

 $\frac{d\Gamma}{dq^2} \propto |V_{xb}|^2 |f(q^2)|^2$ $q^2 = (p_\ell + p_\nu)^2$

• A large number of upcoming results...

"Rediscovery" of $B \rightarrow \pi \ell \nu$

Toward $|V_{ub}|$ extraction

- Hadronic-tagged $B \rightarrow \pi \ell \nu$ gives best constraints on $|V_{ub}|$
 - Requires extraction of Γ in q^2 bins
 - \circ **Very low statistics** (hadronic tagging efficiency and $|V_{ub}|^2$)
- *Observed* with significance $>5\sigma$
- "Rediscovery" shows: Belle II soon capable of competitive inclusive and exclusive V_{ub} and V_{cb}

Status and prospects

- SuperKEKB is delivering world-record luminosities
- First *trickle* of physics results show excellent performance and physics potential
- Expect a *flood* of diverse results as Belle II dataset grows to comparable size with BaBar/Belle

Thank you!

Additional slides

Comparison with LHCb

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹)	~25	~50,000
Background level	High	Low
Typical efficiency	Low	High
π^0 , K_S efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Good
Collision spot size	Large	Tiny
Heavy bottom hadrons	B_s, B_c, b -baryons	Partly B _s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%