

Recent Results from Belle & Belle II

Bipul Bhuyan Indian Institute of Technology Guwahati

(On behalf of the Belle and Belle II Collaborations)

XXVIII International Conference on SUSY 2021 Institute of Theoretical Physics, CAS, Beijing August 23 - 28, 2021

1st generation *B*-factory experiments

KEKB to SuperKEKB nanobeams

Belle II Detector

Bipul Bhuyan I SUSY 2021

Lepton Flavor Violation

- Observed neutrino oscillations signal violation of lepton flavor in the neutral leptonic sector.
 - What about LFV in the charged leptons?
- LFV violation in the charged leptons is highly suppressed in the SM even after the inclusion of neutrino masses:
 - Neutrino masses are expected to be much smaller compared to the electroweak scale, $M_W \approx 80.4$ GeV.
 - Searches of LFV in the SM is beyond experimental reach:

$$\mathcal{B}(\tau \to \ell \gamma) \propto \left(\frac{M_{\nu_{\tau}}^2 - M_{\nu_{\ell}}^2}{M_W^2}\right)^2 \approx 10^{-50} \sim 10^{-54}$$

- Observation of LFV in the charged lepton is a clear signal for NP beyond SM:
 - Many extensions of the SM such as SUSY, little Higgs models, extra dimensions predict enhanced LFV.
 - LFV in τ decays can be as high as $O(10^{-8})$
 - Within the reach of Belle II
- Searches for charged LFV is currently dominated by BaBar and Belle experiments. Most of the results are in τ decays
 - Heaviest lepton: less GIM suppression compared to muon
 - Strong coupling to NP contributions
 - many possible LFV decays

Lepton flavor violation in tau decays

Search for LFV decays $\tau \rightarrow l \gamma$ ($l = e, \mu$) using total integrated luminosity of 988 fb⁻¹. Largest • number of tau pairs recorded by a single e^+e^- experiment so far.

Belle

ZE/√S

0.02

0.01

-0.01

-0.02

-0.03

- Require $N_l = 1$, $N_{\gamma} = 1$ on the signal side, Tag side: 1-prong decay (Eq. $\tau \rightarrow l\nu\nu, \pi\nu, \rho\nu$)
- Improved analysis techniques, including additional variables to improve the signal to noise ratio. Blind analysis techniques.
- Un-binned maximum likelihood fit to:
 - $M_{bc} = \sqrt{[(E_{beam}^{CM})^2 (\vec{p}_{lv}^{CM})^2]}$
 - $\frac{\Delta E}{\sqrt{s}} = (E_{l\gamma}^{CM} \sqrt{s}/2)/\sqrt{s}$
- Major backgrounds:
 - $\tau \rightarrow l \nu \nu + ISR$ or beam background
 - $ee \rightarrow ll + ISR$ or beam background

Channel	$ au ightarrow \mu \gamma$	$ au ightarrow e\gamma$
Signal efficiency	3.7%	2.9 %
Exp. # bkgs.	5.8 ± 0.4	5.1 ± 0.4
Obs. event	5	5
$N_{ m sig}^{ m UL}$	2.8	3.0
UL (90% CL)	$< 4.2 \times 10^{-8}$	$< 5.6 \times 10^{-8}$

Most stringent limit on the muon channel so far.

See Hulva Atmacan's talk LFV and LFU at Belle

Lepton flavor violation in $B^0 \rightarrow \tau^{\pm} l^{\mp}$

- $B^0 \rightarrow \tau^{\pm} l^{\mp}$ can occur in principle via neutrino mixing.
 - Rate is ~ 10⁻⁵⁴. Beyond experimental reach
- NP models such as Pati-Salam vector leptoquarks of mass 86 TeV/c² give rise to BF ~10⁻⁹.
- Full Belle data set is used: ~711 fb⁻¹.
- No exclusive reconstruction of the signal side τ .
 - *B_{tag}* is reconstructed via hadronic decays. Use the reconstructed *B_{tag}* momentum and the *e⁺e⁻* initial momentum to determine the *B_{sig}* momentum.
 - Calculate "missing mass" as,

$$M_{miss} = \sqrt{\left[\left(E_{sig} - E_l\right)^2 - \left(\vec{p}_{B_{sig}} - \vec{p}_l\right)^2\right]}$$

 M_{miss} should peak at τ mass.

- Background mostly from $b \rightarrow c$ and $b \rightarrow u l v$ decays.
- Signal yields are extracted by performing an unbinned maximum likelihood fit

to the M _{miss}	
distributions	

See Hulya Atmacan's talk LFV and LFU at Belle

Prospects of LFV at Belle II

- Belle II will collect about $10^{11} \tau$ leptons compared to 10^9 presently available.
- Sensitivity depends on the background
 - $\tau \rightarrow 3$ leptons mode is still very clean at Belle II
 - For $\tau \rightarrow \mu \gamma$ better understanding and control of the background will be necessary.

See Marcela Garcia Hernandez's talk

Lepton Flavor Universality

- In the SM, gauge bosons couplings to the three generations of leptons are independent of flavor 🖙 LFU
- Several discrepancies are already observed in the *B*-decays related to LFU.

Lepton Flavor Universality: $B^0 \to K^{*0} \tau^+ \tau^-$

- LFU can be further explored by studying $B^0 \to K^{*0}\tau^+\tau^-$.
- Highly suppressed in the SM, FCNC process, BF $\mathcal{O}(10^{-7})$.
 - Sensitive to BSM models in which coupling is proportional to mass or only couples to the third generation.
- Full data set (~711 fb⁻¹) from the Belle experiment is used.
 - Experimentally difficult. Presence of the neutrinos in the final state makes the full reconstruction of the decay difficult.
 - *B_{tag}* is reconstructed completely from hadronic decay modes. Tagging efficiency ~0.24%.
 - Signal τ is reconstructed from: $\tau^- \rightarrow e^- \overline{\nu_e} \nu_{\tau}$, $\tau^- \rightarrow \mu^- \overline{\nu_{\mu}} \nu_{\tau}$ and $\tau^- \rightarrow \pi^- \nu_{\tau}$. Signal selection efficiency: 1.2×10^{-5}
 - N_{sig} is determined from a fit to the extra energy in the ECL, not associated either with B_{tag} or B_{sig} . Signal region is defined by $E_{ECL}^{extra} < 0.2 \ GeV$.

Observation: $N_{sig} = -4.9 \pm 6.0$ $N_{bkg} = 122.4 \pm 4.9$

Dark Sector Physics

- Zwicky, 1933: first suggestion for the existence of unseen "dark" matter after the analysis of the velocity dispersion of galaxies in the Coma cluster.
- Since then: numerous astrophysical evidences for its existence all based on gravity Structure of Cosmic Microwave Background
 Gravitational Lensing
 Galactic Rotation Curves
 Ga

- But its nature is still a mystery.
 - Most favorable candidate so far: Weakly Interacting Massive Particles (WIMP)
- So far null results from direct detection experiments and LHC
 - New ideas needed to go beyond the standard WIMP paradigm.
- Dark sectors can include one or more mediator particles coupled to the SM via *portal*:

$$\mathcal{L} \supset \begin{cases} -\frac{\epsilon}{2\cos\theta_W} B_{\mu\nu} F'^{\mu\nu} \\ (\mu\phi + \lambda\phi^2) H^{\dagger}H , \\ y_n LHN , \\ \frac{a}{f_a} F_{\mu\nu} \widetilde{F}^{\mu\nu} , \end{cases}$$

Vector portal, mediated by A['] with Spin 1 and odd-parity Higgs portal, mediated by a scalar Neutrino portal, mediated by a fermion N Axion portal, with a pseudoscalar *a*

Recent Dark Sector Physics Results at Belle

- Several results are already published on the vector *portal* as it is the most viable for thermal models of light DM.
 - Introduce a new symmetry group U(1)_D for the dark sector if the mediator is a vector boson, A'.
 - The "kinetic mixing" interaction $(\varepsilon / 2\cos\theta_W)B^{\mu\nu}F'_{\mu\nu}$ is invariant under gauge transformations of both U(1)_D and U(1)_Y.
- New results on the Higgs portal: $B^0 \rightarrow A'A'$ [JHEP 04 (2021)191]
 - SM: BF for the 4*l* channel is $O(10^{-12})$
 - Low SM signal and background. Ideal to search for BSM.
 - Assume that A' decays promptly and all dark sector particles coupling to A' are heavier than A'
 - Image: A' can decay only to SM particles.
 - 5 decay modes (4e, 2e 2μ, 4μ, 2e 2π, and 2μ 2π) for the reconstruction of A'.
 - Search for A' in the mass range of (10 MeV 2.6 GeV) with 10 20 MeV interval.
 - Major backgrounds:
 - SM resonances mis-identified as $A' : J/\psi, \psi(2S), D^0$, light mesons $(K_s, \rho^0, \phi, etc.)$
 - $e^+e^- \rightarrow q\overline{q}$, especially for $l^+l^-l^+l^-$ modes
 - Suppressed by the Fisher discriminant
 - Combinatorial, leptons mostly from semi-leptonic decays of quarks.

12

$B^0 \rightarrow A'A'$ Results

- No significant signal yield observed.
- Calculate 90% CL upper limits using Feldman-Cousins unified approach (clean background)
 - UL mostly $\mathcal{O}(10^{-8} 10^{-7})$. Up to $\mathcal{O}(10^{-5})$ near the light meson rejection region.

See Sascha Dreyer's talk for Belle II prospects

14

19/08/21

Radiative Penguin Decay: $B \rightarrow K^* \gamma$

- $b \rightarrow s\gamma$ are FCNC processes, allowed only through loop diagrams in the SM.
 - BSM particles can enter the loop to alter the BF and other observables such as CP asymmetry, isospin asymmetry etc.

- $B \rightarrow K^* \gamma$ suffers from large uncertainties due to form factors.
 - Important observables are CP and isospin asymmetries. Most uncertainties cancel in the ratio.
 - Belle has already reported a 3.1 σ discrepancy in the isospin asymmetry. (PRL 119, 191802 (2017))

$$CP asymmetry A_{CP} = \frac{\Gamma(\bar{B} \to \bar{K}^*\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\bar{B} \to \bar{K}^*\gamma) + \Gamma(B \to K^*\gamma)}$$
Results from Belle II on $B \to K^*\gamma$ are
Isospin asymmetry $\Delta_{+0} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$

Bipul Bhuyan I SUSY 2021

Belle II 2021 Signal Bkg (Preliminary) Ldt = 62.8 fb AE [GeV]

(a)
$$B^0 \to K^{*0}[K^+\pi^-]\gamma$$

u, c, t

(c) $B^+ \rightarrow K^{*+}[K^+\pi^0]\gamma$

Signal

Bka

Mode	Signal yield	Signal efficiency (%)	B.F (Fit) ×10 ⁻⁵	B.F (PDG) ×10 ⁻⁵
$B^0 \rightarrow K^{*0}[K^+\pi^-]\gamma$	454 ± 28	14.9	$4.6\pm0.3\pm0.3$	4.18 ± 0.25
$B^0 \rightarrow K^{*0} [K^0_S \pi^0] \gamma$	50 ± 10	1.7	$4.4\pm0.9\pm0.6$	4.18 ± 0.25
$B^+ \to K^{\star +} [K^+ \pi^0] \gamma$	169 ± 18	4.7	$5.1\pm0.5\pm0.5$	3.92 ± 0.22
$B^+ \to K^{\star +} [K^0_S \pi^+] \gamma$	160 ± 17	4.1	$5.5\pm0.6\pm0.4$	3.92 ± 0.22

Results from Belle II on $B \rightarrow K^* \gamma$ are consistent with SM

See **Yo Sato's** talk

Belle II 2021

(Preliminary)

.dt = 62.8 fb

EW Penguin: $B^{\pm} \rightarrow K^{\pm} \nu \, \overline{\nu}$

BB

B(→Kvv)B

- FCNC process, yet to be observed experimentally.
 - No photon contribution, much cleaner theoretical prediction: $BF(B^{\pm} \rightarrow K^{\pm}\nu\bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$
 - Observation of this decay can help constrain BSM models: leptoquarks, axions, dark matter particles
- Previous searches are based on tagged analyses 🛱
 - B_{tag} is reconstructed completely from semi-leptonic $\frac{3}{4}$ and $\frac{3}{20}$ decay modes. Signal efficiency ~0.2%.
 - *B_{tag}* is reconstructed completely from hadronic decay modes. Signal efficiency ~0.04%.
- Belle II use a new approach based on inclusive tag
 - No explicit reconstruction of the second B-meson
 - Use BDTs to exploit the topological features of the signal vs background
 - Much higher signal selection efficiency: ~4.3%
- Further improvements are expected
 - Additional data (already 3x more on tape)
 - Additional channels such as the $K^{*0}\bar{\nu}\nu$, $K^0_s\bar{\nu}\nu$ etc.

arXiv:2104.06224 (submitted to PRL)

 $p_T(K^+)$ [GeV/c]

Rediscovery of $B \rightarrow \eta' K$

arXiv:2104.06224

First Belle II measurement of a rare charmless hadronic *B* decay, mediated via hadronic penguin diagram.

- Sensitive to new physics in the hadronic loop.
- Both charged and neutral modes, $B^0 \rightarrow$ $\eta' K_{\rm S}^0$ and $B^{\pm} \rightarrow \eta' K^{\pm}$ are studied.
 - η' is reconstructed from $\eta' \rightarrow \eta \pi^+ \pi^-$ with $\eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \rho \gamma$.
 - 62.8 fb⁻¹ data collected in 2019 and 2020 are used.

Mode	N_{sig}	sig.	$\varepsilon(\%)$	$\varepsilon \mathcal{B}(\%)$	${\cal B}~(10^{-6})$
$B^{\pm} \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) K^{\pm}$	$263 \ ^{+18}_{-19}$	25.7	31.7 ± 0.03	5.45	$63.9 \ ^{+4.6}_{-4.4} \pm 4.0$
$B^{\pm} \to \eta'(\rho(\to \pi^+\pi^-)\gamma)K^{\pm}$	$335 \ ^{+26}_{-25}$	22.2	24.2 ± 0.04	7.05	$62.9 \ ^{+4.8}_{-4.8} \pm 5.5$
$B^0 \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) K^0_S$	$80.0 \ ^{+11.2}_{-10.4}$	13.8	31.0 ± 0.03	1.80	$61.6 \ ^{+8.6}_{-8.0} \pm 3.9$
$B^0 \to \eta'(\rho(\to \pi^+\pi^-)\gamma)K_S^0$	$99.7 \ ^{+14.2}_{-12.7}$	14.2	23.6 ± 0.04	2.35	58.5 $^{+7.9}_{-7.4} \pm 4.4$

	This analysis	World average
Channel	$\mathcal{B}(imes 10^6$	³)
$B^{\pm} \to \eta' K$	$63.4 + 3.4 \\ -3.3 \\ (stat) \pm 3.4 \\ (syst)$	70.4 ± 2.5
$B^0 \to \eta' K^0$	$59.9 + 5.8_{-5.5}$ (stat) ± 2.7 (syst)	66 ± 4

Results are compatible with the world average.

Rediscovery of $\mathbf{B} \rightarrow J/\psi K_L$

- Mesurement of $\sin(2\phi_1/\beta)$ using $B^0 \to J/\psi K_L^0$ decay complements the one from $B^0 \to J/\psi K_S$.
 - Observed signal yield is consistent with the Belle measurement with similar purity
 - More to come: time-dependent CP violation and precise measurement of $sin(2\phi_1)$.

$$\begin{split} N_{\rm sig}~(\mu^+\mu^-) &= 267 \pm 21 ({\rm stat}) \pm 28 ({\rm peaking}) \\ N_{\rm sig}~(e^+e^-) &= 226 \pm 20 ({\rm stat}) \pm 31 ({\rm peaking}) \end{split}$$

19/08/21

arXiv:2106.13547

D^0 and D^+ Lifetime Measurements

- Select high purity samples of $D^{*+} \to D^0 (\to K^- \pi^+)\pi^+$ and $D^{*+} \to D^+ (\to K^- \pi^+ \pi^+)\pi^0$ decays.
 - 72 fb⁻¹ of data collected during 2019 and first half 2020 is used in the analysis.
- Fit the distribution of the decay time with accurate modelling of the resolution.
- Dominant systematic uncertainties come from residual detector mis-alignment (D⁰) and from background modelling (D⁺).
- Preliminary results are consistent with, and more precise than, respective world averages.
- Demonstration of excellent vertexing capabilities of the Belle II detector.
 - Combined PXD+SVD system provides average decay-time resolutions of about 70 fs and 60 fs, respectively for D⁰ and D⁺ decays.

19

Bipul Bhuyan I SUSY 2021

20

$B \rightarrow D^{(*)}K/\pi$ towards ϕ_3/γ measurement

- The decays $B^- \to D^{(*)0}\pi^-$ and $\overline{B}{}^0 \to D^{(*)+}\pi^-$ arise from the favored $b \to c$ transition.
 - Some of the most abundant hadronic *B* decays with BF between 0.25% and 0.5%.
- $B^- \rightarrow D^{(*)0}K^-$ are sensitive to CKM unitarity-triangle angle $\phi_3 \text{ or } \gamma$.
 - "golden" mode: $B^- \rightarrow D^0(K_s \pi^+ \pi^-) K^-$
- Ratio between decay rates are important observables:
 - Many systematics cancel in the ratio calculation.
 - Can test theoretical predictions: factorization, SU(3) symmetry breaking in QCD.
- Analysis is based on 62.8 fb⁻¹ of data.
 - Results are consistent with the world average.

Re-optimization of the Belle ϕ_3 analysis on-going

Aiming for first Belle + Belle II combined result shortly.

	$B^- \to D^0 (K^- \pi^+) h^-$	$B^- \rightarrow D^0 (K^0_{\rm S} \pi^+ \pi^-) h^-$	$\bar{B}^0 ightarrow D^+ h^-$
Belle II $R^{+/0}~(\times 10^{-2})$	$7.66 \pm 0.55 \ ^{+0.11}_{-0.08}$	$6.32 \pm 0.81 \ ^{+0.09}_{-0.11}$	$9.22 \pm 0.58 \pm 0.09$
LHC b $R^{+/0}~(\times 10^{-2})$	$7.77 \pm 0.04 \pm 0.07 \ [24]$	$7.77 \pm 0.04 \pm 0.07 \; [24]$	$8.22 \pm 0.11 \pm 0.25$ [25]

Belle II Run Plan

- 2021: Already collected about 213 fb⁻¹
- 2021: Autumn run.
 - Y(4S): ~ 400 fb⁻¹
 - 10.75 GeV + Scan for 10 fb⁻¹ is planned.
- 2022 Summer: ~ 700 fb⁻¹ (equivalent to total Belle data)
- 2022 Long shutdown1 (LS1)
 - Full pixel in the 2nd inner most layer.
 - TOP PMT replacement
- 2026: ~15 ab⁻¹
- 2031: ~50 ab⁻¹

Summary

- Flavor physics at the electron-positron collider offers an extremely rich physics program with many opportunities to probe new physics beyond the SM.
 - Much cleaner environment: great for physics studies with π^0 , γ and ν . Inclusive analysis possible with full control on the event kinematics.
- Belle continues to produce interesting physics results which are sensitive to the BSM searches.
 - Will continue to do so for few more years before Belle II takes over.
- Belle II has already collected about 213 fb⁻¹ of data. Complimentary physics program to LHCb.
 - Started to publish competitive physics results. Several new ideas to increase the sensitivity per fb⁻¹ of data.
 - Planning to collect 50 ab⁻¹ of data by 2031.
 - Exciting time ahead in flavor physics.

19/08/21

Backup Slides

Precision Measurements at Belle II vs LHCb

Table 16. Expected errors on several selected flavor observables with an integrated luminosity of 50 ab^{-1} of Belle II data. Errors given in % represent relative errors. In the final column we denote where LHCb is expected to reach a highly competitive level of precision: if one experiment is expected to be slightly more accurate we list it first.

Observables	Exp. theor. accuracy	Exp. experim. uncertainty	Facility (2025)
UT angles and sides			
φ1 [°]	***	0.4	Belle II
φ ₂ [°]	**	1.0	Belle II
φ ₃ [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
V _{cb} excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP violation			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow \eta' K^0)$	***	0.01	Belle II
$A(B \rightarrow K^0 \pi^0)$ [10 ⁻²]	***	4	Belle II
$\mathcal{A}(B \rightarrow K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \rightarrow \tau \nu) [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \rightarrow \mu \nu) [10^{-6}]$	**	7%	Belle II
$R(B \rightarrow D\tau \nu)$	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative and EW penguins			
$\mathcal{B}(B \rightarrow X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	***	0.005	Belle II
$S(B \rightarrow K_s^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \rightarrow \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb
Charm			
$\mathcal{B}(D_s \rightarrow \mu \nu)$	***	0.9%	Belle II
$\mathcal{B}(D_s \rightarrow \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \rightarrow K_S^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$ q/p (D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-)$	***	0.03	Belle II
$A_{CP}(D^+ \to \pi^+ \pi^0) [10^{-2}]$	**	0.17	Belle II
Tau			
$\tau \rightarrow \mu \gamma [10^{-10}]$	***	< 50	Belle II
$\tau \rightarrow e\gamma [10^{-10}]$	***	< 100	Belle II
$\tau ightarrow \mu \mu \mu [10^{-10}]$	***	< 3	Belle II/LHCb

- Details in "The Belle II Physics Book", Prog. Theor. Exp. Phys. 2019, 123C01.
- e^+e^- collider: much cleaner environment, good for final states with γ, π^0 and ν
- Possible to do inclusive analysis by exploiting event kinematics.