LFU Tests in Tau Decays at Belle II

Petar Rados (HEPHY) on behalf of the Belle II Collaboration

Anomalies and Precision in the Belle II Era - Workshop Vienna, 8 September 2021

European Research Council

Belle II as a τ -factory

- B-factories are also *τ*-factories!
 - σ(e⁺e⁻→Y(4s)) = 1.05 nb
 - $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$

- Last generation B-factories provided a variety of very interesting τ physics results in the last two decades
- Over its lifetime Belle II will deliver an enormous sample of ~4.6×10¹⁰ τ-pair events

a unique environment to study τ physics with high precision!

• LFU \Rightarrow couplings of leptons to W bosons is flavour independent

 $\mathbf{g}_{\mathbf{e}} = \mathbf{g}_{\mu} = \mathbf{g}_{\tau}$

- Anomalies in **quark sector**
 - R(D)-R(D*) (<mark>3.1</mark>σ)
 - R(K) (<mark>3.1</mark>σ)
 - P₅' in B→K*μμ (<mark>3.4</mark>σ)
 - B_s→φll (<mark>3.6</mark>σ)
 - and more...

- also lepton sector
 - (g-2)_μ (<mark>4.2</mark>σ)
 - and also for e (2.5σ)

- Hints of a new fundamental interaction that violates LFU?
- If so, then we could see evidence also in the tau sector
 - \Rightarrow test of e- μ universality

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto \frac{B(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau})}{B(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau})}$$

 \Rightarrow test of τ - μ universality

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h}^{2} \propto \frac{B(\tau \to h\nu_{\tau})}{B(h \to \mu\nu_{\mu})}$$

 $R(D^*)$

0.4

0.35

0.3

0.25

0.2

LHCb15

HFLAV average

LHCb18

Belle17

0.2

3σ

Ŧ

0.3

Belle19

+ Average of SM predictions $R(D) = 0.299 \pm 0.003$ $R(D^*) = 0.258 \pm 0.005$

0.4

 $\Delta \chi^2 = 1.0$ contours

BaBar12

HFLAV

Spring 2019

 $P(\chi^2) = 27\%$

R(D)

0.5

Belle15

Test of $e-\mu$ universality

• The most stringent test of μ -e universality in the tau sector comes from measurement of the ratio R_{μ} :

$$R_{\mu} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})} \qquad \Rightarrow \quad \left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} = R_{\mu} \cdot \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \quad \text{, where:} \quad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2}\log x$$

• World-leading measurement from *BABAR* (467 fb⁻¹) with $e^+e^- \rightarrow \tau^{\pm}(\rightarrow \ell^{\pm}\nu\bar{\nu}) \ \tau^{\mp}(\rightarrow 3h^{\mp}(n\pi^0)\nu)$

PRL 105:051602 (2010)

$$R_{\mu} = 0.9796 \pm 0.0016 \text{ (stat)} \pm 0.0036 \text{ (sys)}$$
$$\left(\frac{g_{\mu}}{g_e}\right)_{\tau} = 1.0036 \pm 0.0020$$

- High purity samples were achieved:
 - ▶ 99.7% in the $\tau \rightarrow e \overline{v} v$ channel
 - ▶ 97.3% in the $\tau \rightarrow \mu \nabla v$ channel

Search for LFUV in $\tau \rightarrow \ell \bar{\nu} \nu$

- Global fit to $\tau \rightarrow \ell \bar{\nu} \nu$ and $\mu \rightarrow e \bar{\nu} \nu$ ratios (latter well constrained by EW data) $\Rightarrow 2\sigma$ tension with SM
- NP could enter in a variety of ways
 - LFV violating Z'
 - Singly charged scalar
 - W'
 - $L_{u}-L_{T}Z'$ (box diagrams)
 - Modified Wlv couplings, and more...

Will this tension become more significant with better precision on *R*_μ?
 Belle II can provide answers!

Belle II analysis

- MC sensitivity study for the test of e-μ universality using e⁺e⁻ → τ⁻(→Γνν) τ⁺(→3h⁺(nπ⁰)ν) events @ Belle II
- Use thrust vector to separate events into signal (1-prong) and tag (3-prong) hemispheres

$$V_{thrust} = \sum \frac{|\overrightarrow{p}_{i}^{CMS} \cdot \widehat{n}_{trust}|}{\sum \overrightarrow{p}_{i}^{CMS}} \qquad |\overrightarrow{p}_{signal}^{CMS} \cdot \widehat{n}_{thrust}| \cdot |\overrightarrow{p}_{tag,i}^{CMS} \cdot \widehat{n}_{trust}| < 0, \forall i \in \text{tag}$$

\ alla

- <u>New</u> @ Belle II: dedicated ECL triggers for low multiplicity signatures (ImI)
- Efficiency for 3x1 topology driven by ImI0:

BELLE2-NOTE-PL-2021-009

- \geq 3 ECL clusters, one with E > 300 MeV and not an ECL Bhabha
- Further boost efficiency by taking logical OR with 9 other Iml triggers
- For p > 1 GeV: >95% efficiency in $\tau \rightarrow e \overline{v} v$ channel >90% efficiency in the $\tau \rightarrow \mu \overline{v} v$ channel

Lepton identification

 Data/MC correction factors and systematic uncertainties have been measured from several tag-and-probe studies

BELLE2-CONF-PH-2021-002

- Efficiency studies: $\ell \ell(\gamma), \ ee\ell\ell \ \& \ J/\psi \to \ell\ell$
- Fake rate studies: $K^0_S \to \pi \pi$, $\tau \tau$ & $D^* \to D^0 (\to K \pi) \pi$

- @ Belle II we have available two kinds of lepton identification (ID)
 - Likelihood-based:

$$\frac{\mathcal{L}_{\ell}}{\mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_{K} + \mathcal{L}_{p}} \quad , \qquad \mathcal{L}_{i} = \prod_{d}^{d \in D} \mathcal{L}_{i}^{d} \qquad \Rightarrow \quad \text{leptonID > 0.9}$$

► Boosted Decision Tree (BDT) -based factor ~10 (~2) $\pi \rightarrow e(\mu)$ fake reduction at p < 1 GeV for same efficiency \Rightarrow leptonID > 0.9 (0.99) for $\tau \rightarrow \mu(e) \nu \overline{\nu}$

Background suppression

 Optimisation of cut-based analysis. Factor 100 penalty to background in FOM, favouring purity over efficiency.

FOM =	$_$ N_{sig}
	$\sqrt{N_{sig} + 100 \cdot N_{bkg}}$

tag sida	track p⊤ [GeV] track E/p	<i>lead</i> : (0.75, 4.39) <i>sub</i> : (0.45, 2.43) <i>third</i> : (0.12, 1.76) < 0.8	(0.68, 3.59) (0.17, 2.45) (0.04, 1.68) < 0.8
tug side	vertex prob(χ^2)	[0, 0.99)	<u>≥</u> 0
	neutrals	# π ^ο <_1 #γ < 1	<u><</u> 1 <1
	mass [GeV]	(0.5, 1.5)	(0.55, 1.4)
cianal cida	track cluster energy [GeV]	(0.4, 5.6)	(0.17, 0.3)
signal side	track E/p	(0.95, 1.04)	(0.06, 0.2)
	track p (CMS) [GeV]	(0.6, 4.8)	(0.6, 3.6)
	neutrals	π^0 veto	veto

τ→e⊽v channel τ→μ⊽v channel

tag side decay

Tag strategy at Belle II:

- E/p < 0.8 (or undefined)
- asymmetric thresholds on lead, sublead and third $\pi^\pm\,{\rm p_T}$

• BABAR style:

 rely instead on tighter <u>pion ID</u> requirements to reach required level of purity

Background suppression

 Optimisation of cut-based analysis. Factor 100 penalty to background in FOM, favouring purity over efficiency.

$$FOM = \frac{N_{sig}}{\sqrt{N_{sig} + 100 \cdot N_{bkg}}}.$$

		τ→e⊽v channel	τ→μ⊽v channel
tag side	track p⊤ [GeV] track E/p	<i>lead</i> : (0.75, 4.39) <i>sub</i> : (0.45, 2.43) <i>third</i> : (0.12, 1.76) < 0.8	(0.68, 3.59) (0.17, 2.45) (0.04, 1.68) < 0.8
	vertex prob(χ^2)	[0, 0.99)	<u>≥</u> 0
	neutrals	$\# \pi^0 \leq 1$	<u><</u> 1
	mass [GeV]	$\# \gamma \leq 1$ (0.5, 1.5)	(0.55, 1.4)
			I
signal side	track cluster energy [GeV]	(0.4, 5.6)	(0.17, 0.3)
	track E/p	(0.95, 1.04)	(0.06, 0.2)
	track p (CMS) [GeV]	(0.6, 4.8)	(0.6, 3.6)
	neutrals	π ^ο veto γ veto	veto veto
ovent shane			
& kinematics	Missing momentum θ [deg]	(13, 172)	(5, 170)
	Thrust value	(0.9, 0.98)	(0.92, 0.99)
	Total visible E (CMS) [GeV]	(2.5, 8)	(3, 8)

8

Performance

- Comparing three Belle II working points:
 - Belle II tag selection, and either likelihood or BDT-based lepton ID
 - **BABAR-style tag** (pion ID > 0.5 for the 3-prong tracks)

Performance

$$\varepsilon = \frac{N_{selected}^{signal}}{N_{generated}^{signal}} \qquad P = \frac{N_{selected}^{signal}}{N_{selected}^{total}}$$
$$N_{generated}^{signal} = 2 \cdot \sigma_{\tau\tau} \cdot \mathcal{L} \cdot \mathcal{B}_{\tau \to \ell \bar{\nu} \nu} \cdot \mathcal{B}_{tag}$$

- Comparing three Belle II working points:
 - Belle II tag selection, and either likelihood or BDT-based lepton ID
 - **BABAR-style tag** (pion ID > 0.5 for the 3-prong tracks)

Compared to BABAR, Belle II has ~4x higher efficiency with better purity

Belle II sensitivity

 Projection of <u>statistical</u> precision on R_μ as function of luminosity

$$R_{\mu} = \frac{\mathcal{B}[\tau^- \to \mu^- \bar{\nu_{\mu}} \nu_{\tau}]}{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_{\tau}]}$$

Belle II can match BABAR stat. precision with ~100 fb⁻¹ of data. Expect to reach <0.1% precision on Summer 2022 dataset.

Belle II sensitivity

 Projection of <u>statistical</u> precision on R_μ as function of luminosity

$$R_{\mu} = \frac{\mathcal{B}[\tau^- \to \mu^- \bar{\nu_{\mu}} \nu_{\tau}]}{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_{\tau}]}$$

Belle II can match BABAR stat. precision with ~100 fb⁻¹ of data. Expect to reach <0.1% precision on Summer 2022 dataset.

• However, like at BABAR, the measurement in the end will be <u>systematics</u> limited!

systematics (@BABAR
---------------	---------------

Systematic uncertainties:		
Particle ID	0.32	
Detector response	0.08	
Backgrounds	0.08	
Trigger	0.10	
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.01	
Radiation	0.04	
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)$	0.05	
$\mathcal{L}\sigma_{e^+e^- \to \tau^+ \tau^-}$	0.02	
Total [%]	0.36	

Belle II sensitivity

 Projection of <u>statistical</u> precision on R_µ as function of luminosity

$$R_{\mu} = \frac{\mathcal{B}[\tau^- \to \mu^- \bar{\nu_{\mu}} \nu_{\tau}]}{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_{\tau}]}$$

Belle II can match BABAR stat. precision with ~100 fb⁻¹ of data. Expect to reach <0.1% precision on Summer 2022 dataset.

 However, like at BABAR, the measurement in the end will be <u>systematics</u> limited!

systematics @BABAR

Systematic uncertainties:		
Particle ID	0.32	
Detector response	0.08	
Backgrounds	0.08	
Trigger	0.10	
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.01	
Radiation	0.04	
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)$	0.05	
$\mathcal{L}\sigma_{e^+e^- o au^+ au^-}$	0.02	
Total [%]	0.36	

\Rightarrow Can we do better at Belle II?

- LID uncertainties for isolated leptons should scale well with luminosity + higher stat MC. Important to understand differences b/w T&P studies (J/Ψ→II, ee→IIγ and 2γ).
- Trigger uncertainty will depend on stable L1 operation and reliable simulation. At Belle II we are already at the ~1% level (vs 10% at BABAR).
- A lot of work ahead and already underway...

Search for LFUV with 1x1 topology

- Belle II also plans to test **e-µ universality** using the **1x1 topology**.
- Never studied by Belle/BABAR. Most recent result from CLEO (3.56 fb⁻¹). <u>SLAC-PUB-9839</u>
- 1x1 benefits from larger signal sample: inclusive 1-prong tag (BR~85%). However, both the backgrounds and trigger more challenging.

Search for LFUV with 1x1 topology

- Belle II also plans to test **e-µ universality** using the **1x1 topology**.
- Never studied by Belle/BABAR. Most recent result from CLEO (3.56 fb⁻¹). <u>SLAC-PUB-9839</u>
- 1x1 benefits from larger signal sample: **inclusive 1-prong tag** (BR~85%). However, both the backgrounds and trigger more challenging.
- @ Belle II we are starting with the clean muon tag $(\tau \rightarrow \mu \overline{\nu} \nu)$

BELLE2-NOTE-PL-2021-009

Search for LFUV with 1x1 topology

- Belle II also plans to test **e-µ universality** using the **1x1 topology**.
- Never studied by Belle/BABAR. Most recent result from CLEO (3.56 fb⁻¹). <u>SLAC-PUB-9839</u>
- 1x1 benefits from larger signal sample: **inclusive 1-prong tag** (BR~85%). However, both the backgrounds and trigger more challenging.
- @ Belle II we are starting with the clean muon tag $(\tau \rightarrow \mu \overline{\nu} \nu)$
- Lepton ID for tag and signal side:
 - again, considering both likelihood and BDT-based LID
- Trigger:
 - eµ channel:
 logical OR of ECL Iml triggers
 - μμ channel:
 CDC track triggers (long & short)

BELLE2-NOTE-PL-2021-009

 In order to suppress the significantly larger backgrounds in the 1x1 topology, we have developed two MVA techniques:

 In order to suppress the significantly larger backgrounds in the 1x1 topology, we have developed two MVA techniques:

 In order to suppress the significantly larger backgrounds in the 1x1 topology, we have developed two MVA techniques:

 In order to suppress the significantly larger backgrounds in the 1x1 topology, we have developed two MVA techniques:

1x1 analysis: performance

• Using MVA we can go beyond CLEO performance for <u>eμ</u> events, and get very close for <u>μμ</u> events

- Belle II can already exceed CLEO on <u>statistical</u> precision for R_μ.
- There is a lot of work ahead to get systematic uncertainties at or below CLEO-level (especially lepton ID).

LFU in $\tau \rightarrow hv$ and V_{us}

 We can also test τ-μ universality using τ→hv (h = π,K) decays

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h}^{2} = \frac{\mathcal{B}(\tau \to h\nu_{\tau})}{\mathcal{B}(h \to \mu\nu_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1+\delta_{h})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{h}^{2}}{1-m_{h}^{2}/m_{\tau}^{2}}\right)$$

• World-leading measurement from BABAR: <u>Phys.Rev.Lett.105:051602 (2010)</u> $\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h} = 0.9850 \pm 0.0054 \Rightarrow 2.8\sigma$ below the SM expectation

 $\mathbf{2}$

LFU in $\tau \rightarrow hv$ and V_{us}

 We can also test *τ*-μ universality using *τ*→hv (h = π,K) decays

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h}^{2} = \frac{\mathcal{B}(\tau \to h\nu_{\tau})}{\mathcal{B}(h \to \mu\nu_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1+\delta_{h})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{h}^{2}}{1-m_{h}^{2}/m_{\tau}^{2}}\right)$$

• World-leading measurement from BABAR: <u>Phys.Rev.Lett.105:051602 (2010)</u> $\left(\frac{g_{\tau}}{g_{\mu}}\right)_{h} = 0.9850 \pm 0.0054 \Rightarrow 2.8\sigma$ below the SM expectation

 From this analysis one can also extract the CKM element |Vus|:

$$R_{K/\pi} \equiv \frac{\mathcal{B}(\tau^- \to K^- \nu_{\tau})}{\mathcal{B}(\tau^- \to \pi^- \nu_{\tau})} = \frac{f_K^2 (V_{us}|^2)}{f_{\pi}^2 |V_{ud}|^2} \frac{\left(1 - \frac{m_K^2}{m_{\tau}^2}\right)^2}{\left(1 - \frac{m_{\pi}^2}{m_{\tau}^2}\right)^2} (1 + \delta_{LD})$$

 $\mathbf{2}$

- Several methods for measuring $|V_{us}| \Rightarrow Hot topic!$
 - Neutral kaon decays, like $K_L^0 \rightarrow \pi^- e^+ \nu$
 - CKM unitarity
 - Tau decays

there is a tension b/w the unitarity and other two approaches...

tag

BF~15%

 e^{\neg}

```
New Physics?
PRL 127.071801 PRL 125.111801
```

 \hat{n}_{thrust}

signal

 $BF(\pi v) \sim 10.8\%$

 $BF(Kv) \sim 0.7\%$

LFU in $\tau \rightarrow hv$ and V_{us}

- BABAR achieved a purity of 78.7% (76.6%) in the π (K) channel
- ⇒ excellent hadron ID (π vs K) performance will be critical to achieving this level of purity at Belle II

Systematics @BABAR

	π	K
Particle ID	0.51	0.94
Detector response	0.64	0.54
Backgrounds	0.44	0.85
Trigger	0.10	0.10
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.07	0.27
Radiation	0.10	0.04
${\cal B}(au^- o \pi^- \pi^- \pi^+ u_ au)$	0.15	0.40
$\mathcal{L}\sigma_{e^+e^- ightarrow au^+ au^-}$	0.39	0.20
Total [%]	1.0	1.5

- Measurement systematics dominated, led by: hadron ID, detector response and the background modelling.
- The corresponding analysis at Belle II is now in full swing!

Summary

Belle II prospects for testing of e-μ universality in τ→Ivv (/=e,μ): BELLE2-NOTE-PL-2021-009

- 3x1 topology:
 - match statistical precision of BABAR with ~100 fb⁻¹ of data (we currently have 213 fb⁻¹)
 - working hard to get LID systematics to a level that is competitive with BABAR
- ► 1x1 topology:
 - starting with clean muon tag (plan to eventually include other 1-prong decays)
 - MVA techniques allow us to exceed (eµ) or closely approach (µµ) CLEO performance
 - again, we are working hard to get LID systematics to a competitive level
- $\tau \mu$ universality (and $|V_{us}|$) analysis in $\tau \rightarrow hv$ (h = π, K) is now also in full swing.

Belle II will soon become a major player in the search for LFUV in tau decays. Exciting times ahead!

BACKUP

SuperKEKB Accelerator

Next generation B-factory: e⁺e⁻ → Y(4S) → BB
 , √s ≈ 10.58 GeV

 + rich program of tau, dark sector and other low-multiplicity physics

- Unprecedented design luminosity of ~6×10³⁵ cm⁻²s⁻¹
- First e⁺e⁻ collisions in April 2018. Current holder of the luminosity world record (2.9 × 10³⁴ cm⁻²s⁻¹).

Belle II Detector

Luminosity status and goals

 Since 2019 Belle II has recorded ~213 fb⁻¹ of data.

• Aiming for a similar data sample size as BABAR by summer 2022.

 Over the next ~10 years our goal is to accumulate 50 ab⁻¹ (50 x Belle dataset).

- MC14 run-independent (MC14ri_a), release-05-02-00
- Nominal beam bkg conditions (BGx1), early Phase 3 geometry
- Considering the generic and low-multiplicity samples shown on right
- Unskimmed mDSTs
- basf2 light-2106-rhea for steering file

Process	cross section [nb]	MC luminosity $[fb^{-1}]$
$ee \to \tau \tau$	0.919	100
$ee \to u\bar{u}$	1.605	100
$ee \to d\bar{d}$	0.401	100
$ee \to s\bar{s}$	0.383	100
$ee \to c\bar{c}$	1.329	100
$ee \rightarrow B^+B^-$	0.54	100
$ee \to B^0 \overline{B}{}^0$	0.51	100
$ee \rightarrow ee(\gamma)$	295.8	10
$ee \to \mu \mu(\gamma)$	1.148	100
$ee \rightarrow eeee$	39.55	100
$ee \rightarrow ee \mu \mu$	18.83	100
$ee \to ee\pi\pi$	1.895	100
$ee \rightarrow eeKK$	0.0798	1000
$ee \rightarrow eepp$	0.0117	1000
$ee ightarrow \mu \mu \mu \mu$	0.3512×10^{-3}	1000

Pre-selections

• Events required to contain exactly 4 good quality tracks (from interaction region)

Good tracks

- −3.0 < dz < 3.0 cm
- dr < 1.0 cm

 Thrust computed from good tracks, π⁰s and additional photons (E > 200 MeV)

 $V_{thrust} = \sum \frac{|\overrightarrow{p}_i^{CMS} \cdot \widehat{n}_{trust}|}{\sum \overrightarrow{p}_i^{CMS}}$

 $π^0$ additional γ• $E_γ > 100 \text{ MeV}$ • $E_γ > 200 \text{ MeV}$ • -0.8660 < cosθ < 0.9563</td>• ClusterNHits > 1.5• 115 < $M_{yy} < 152 \text{ MeV}$ • clusterNHits > 1.5• not $π^0$ photon

 Use thrust vector to separate events into signal (1-prong) and tag (3-prong) hemispheres

$$\overrightarrow{p}_{signal}^{CMS} \cdot \widehat{n}_{trust} \mid \cdot \mid \overrightarrow{p}_{tag,i}^{CMS} \cdot \widehat{n}_{trust} \mid < 0, \forall i \in \text{tag.}$$

- Loose PID requirements:
 - tag tracks: E/p < 0.8
 - signal track: electronID (noTOP) > 0.5 or muonID > 0.5

- Events are required to fire the logical OR of several unprescaled low-multiplicity (ImI) ECL triggers
- Iml0 : \geq 3 clusters with at least one having $E^* > 300$ MeV, $1 < \theta_{ID} < 17$ (corresponding to $12.4^{\circ} < \theta < 154.7^{\circ}$, full ECL) and not an ECL Bhabha.
- **Iml1** : exactly 1 cluster with $E^* > 2$ GeV and $4 < \theta_{ID} < 14$ ($32.2^\circ < \theta < 124.6^\circ$)
- **Iml2** : ≥ 1 cluster with $E^* > 2$ GeV, $\theta_{ID} = 2, 3, 15$, or 16 (18.5° $< \theta < 32.2^{\circ}$ or 124.6° $< \theta < 139.3^{\circ}$) and not an ECL Bhabha.
- Iml4 : ≥ 1 cluster with $E^* > 2$ GeV, $\theta_{ID} = 1$ or 17 (12.4° < θ < 154.7°) and not an ECL Bhabha.
- **Iml6** : exactly 1 cluster with $E^* > 1$ GeV, $4 < \theta_{ID} < 15$ (32.2° $< \theta < 128.7^\circ$, full ECL barrel) and no other cluster with E > 300 MeV anywhere.
- Iml7 : exactly 1 cluster with $E^* > 1$ GeV, $\theta_{ID} = 2$, 3 or 16 (18.5° $< \theta < 31.9^\circ$ or 128.7° $< \theta > 139.3^\circ$) and no other cluster with E > 300 MeV anywhere.
- **Iml8** : cluster pair with $170^{\circ} < \Delta \phi < 190^{\circ}$, both clusters with $E^* > 250$ MeV and no 2 GeV cluster in the event.
- **Iml9** : cluster pair with $170^{\circ} < \Delta \phi < 190^{\circ}$, one cluster with $E^* < 250$ MeV with the other having $E^* > 250$ MeV, and no 2 GeV cluster in the event.
- **Iml10** : cluster pair with $160^\circ < \Delta \phi < 200^\circ$, $160^\circ < \sum \theta < 200^\circ$ and no 2 GeV cluster in the event.
- **Iml12** : \geq 3 clusters with at least one having $E^* > 500$ MeV, $2 < \theta_{ID} < 16$ (corresponding to $18.5^\circ < \theta < 139.3^\circ$, full ECL) and not an ECL Bhabha. (θ_{ID} values have to be double checked).

Absolute trigger efficiency in MC (TSIM, release-05-02-00):

 For this trigger configuration, TSIM has been shown to reproduce data efficiency within ~1%.

Pseudodata measurement

- Pseudodata = int(total MC yield), with \sqrt{N} uncertainty
- In each channel compute:

$$N_{i}^{sig} = \epsilon^{-1} (N_{i}^{pseudodata} - N_{i}^{bkg}) \quad \text{where:} \quad \epsilon = \frac{N^{selected}}{N^{generated}}$$
$$\mathcal{B}_{i} = \frac{\mathbf{N}_{i}^{Sig}}{2\mathcal{L}\sigma_{e^{+}e^{-} \to \tau^{+}\tau^{-}}}$$

- Then taking ratio: $R_{\mu} = \frac{\mathcal{B}(\tau^- \rightarrow \mu^- \nu_{\tau} \overline{\nu}_{\mu})}{\mathcal{B}(\tau^- \rightarrow e^- \nu_{\tau} \overline{\nu}_e)}$
- Belle II (108 fb⁻¹): $\delta R_{\mu}/R_{\mu}^{pseudodata} = 0.16\% (stat)$ • BABAR (467 fb⁻¹): $\delta R_{\mu}/R_{\mu}^{data} = 0.16\% (stat) \pm 0.37\% (sys)$

With only ~100 fb⁻¹ we can reach the statistical precision of BABAR on R_{μ}

Alberto Lusiani, ICHEP 2020:

Figure 2: Results of a $|V_{ud}|$ - $|V_{us}|$ simultaneous fit. The bands describe the constraints corresponding to the $|V_{ud}|$ measurement, the $|V_{us}|_{\tau s}$ and the $|V_{us}|_{\tau K/\pi}$ determinations that use the τ measurements. The oblique line corresponds to the CKM matrix unitarity constraint. The ellipse corresponds to 1σ uncertainty on the $|V_{ud}|$ and $|V_{us}|$ fit results.

• Singly charged scalar

A.C., F. Kirk, C. Manzari, L. Panizzi, arXiv:2012.09845