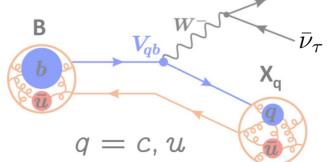


University *of Ljubljana* Faculty *of <u>Mathematics</u> and Physics*

$\mathbf{b} \rightarrow \mathbf{c} \tau \nu$ overview and Belle II prospects

Luka Šantelj,

Jozef Stefan Institute and University of Ljubljana

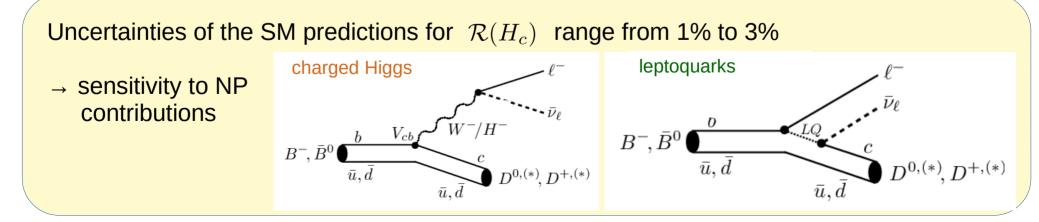

On behalf of the Belle II collaboration

Anomalies and Precision in the Belle II era

Vienna, 6-8.9. 2021

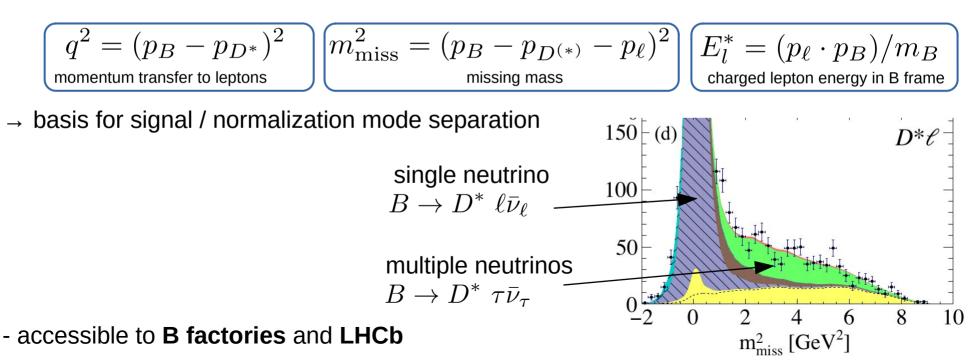
Introduction

- semi-tauonic b
 ightarrow c au
 u decays provide powerful probes of the Standard Model (SM)
 - $_{\rightarrow}$ NP contributions typically less constrained than in $\,b \rightarrow c \ell \nu \,\, (\ell = e, \mu)$
 - \rightarrow rich spectrum of kinematic observables accessible
 - \rightarrow complementary sensitivities of different modes to various SM extensions
 - \rightarrow far from fully explored, experimentally very challenging
 - \rightarrow in the last decade several measurements indicating enhanced rates of $b\to c\tau\nu$ compared with the SM predictions.


Observables

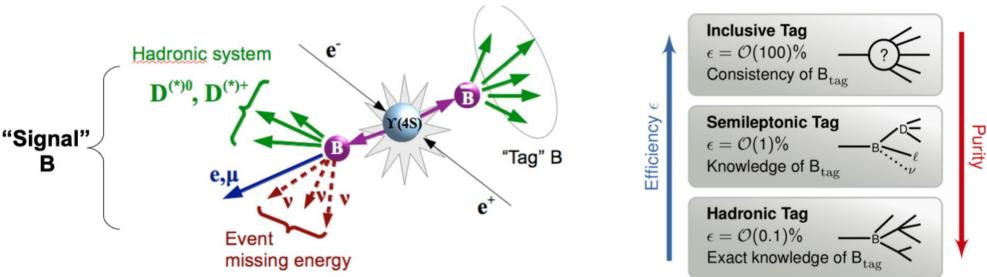
Lepton flavor universality tests: $\mathcal{R}(H_c) = \frac{\mathcal{B}(B \to H_c \ \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to H_c \ \ell \bar{\nu}_{\ell})} \qquad \begin{array}{l} H_C = D^{(*)}, J/\psi \\ (\ell = e, \mu) \end{array}$

 \rightarrow experimentally and theoretically convenient due to cancellation of several uncertainties in the ratio


Kinematic variables: e.g.
$$q^2 = (p_B - p_{D^*})^2$$
 distributions

Polarization fractions: τ polarization, D^{*-} longitudinal polarization

Measurement basics

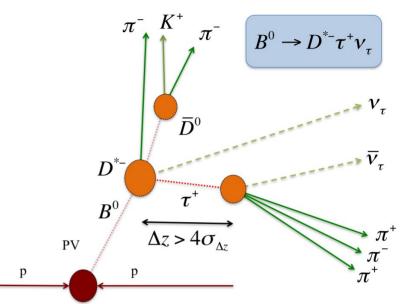

- relatively large branching fractions
- but multiple neutrinos in the final state $\ \ \ \rightarrow \ \ challenging \ decay \ reconstruction$
 - \rightarrow determination of initial B momentum allows for evaluation of

Measurement basics - B factories

-
$$e^+e^- \to \Upsilon(4S) \to B\bar{B}$$

- fully known initial state + hermetic detector (4 π) \rightarrow tagging techniques

 \rightarrow in signal/normalization events all particles in an event assigned (to B_{sig} or B_{tag})


background events: larger $E_{
m ECL}$

signal vs. normalization: $m_{\rm miss}^2 + {\rm kinematics}$

extra energy in EM calorimeter

Measurement basics - LHCb

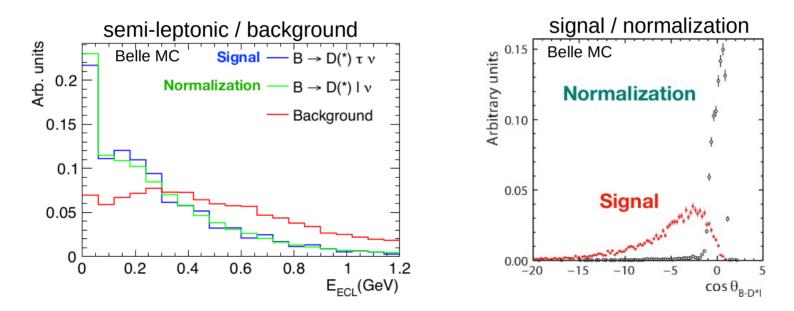
- tagging not available
- but very large sample of b-hadrons + large Lorentz boost + excellent vertexing
 - \rightarrow well separated vertices in the decay chain

- if $\tau\,$ decay vertex can be reconstructed (e.g $\,\tau \to (3\pi)\nu$)

 $\rightarrow B \,$ momentum determined up to discrete ambiguity

- for $\tau \to \mu \nu \bar{\nu}\,$ vertex not available

→ rest frame approximation:
$$(p_B)_z = \frac{m_B}{m_{reco}} (p_{reco})_z$$

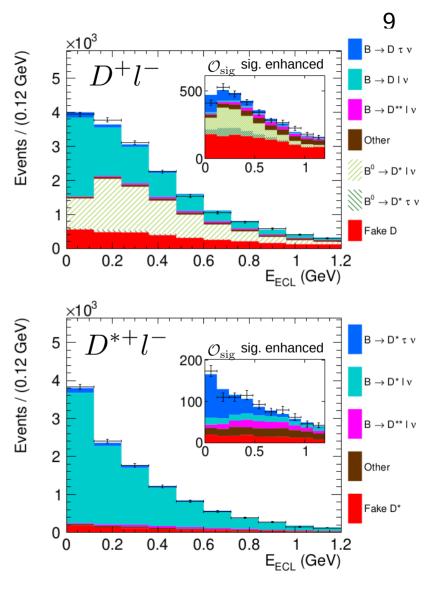

Summary of existing B-factory measurements

Hadronic tag with $\ au o \ell u ar u$	Result	BABAR	Belle
BaBar: Phys. Rev. Lett. 109, 101802, arXiv:1205.5442 Belle: Phys. Rev. D 92, 072014, arXiv:1507.03233			$\begin{array}{c} 0.375 \pm 0.064 \pm 0.026 \\ 0.293 \pm 0.038 \pm 0.015 \end{array}$
Semi-leptonic tag with $ au o \ell u ar{ u}$ Belle: Phys. Rev. Lett. 124, 161803, arXiv:1910.05864	. ,		$(syst) \pm 0.016 (syst)$ $(stat) \pm 0.014 (syst)$
Hadronic tag with $\tau \rightarrow \pi \nu, \tau \rightarrow \rho \nu$ Belle τ polarization measurement Phys. Rev. D 97 (1), 012004, arXiv:1709.00129			$(\text{stat})^{+0.028}_{-0.025}(\text{syst})$ l(stat)^{+0.21}_{-0.16}(syst)
Inclusive tag with $\tau \to \pi \nu, \tau \to \ell \nu \bar{\nu}$ Belle D^{*-} polarization measurement arXiv:1903.03102	$F_{L, au}(L$	$(D^*) = 0.60 \pm 0.08$	$S(\text{stat}) \pm 0.04(\text{sys})$

Example: Latest $\mathcal{R}(D^{(*)})$ from Belle – Semi-leptonic tag Phys. Rev. Lett. 124, 161803, arXiv:1910.05864

- using FEI (full event interpretation) for the tag-side $B \to D^{(*)} l \bar{\nu}_l$ reconstruction

- reconstructed signal modes: $D^+\ell^-, D^0\ell^-, D^{*+}\ell^-, D^{*0}\ell^ (\ell = e, \mu)$
- combine kinematic variables using BDT: $(\cos \theta_{B,D^{(*)}l}, m^2_{\mathrm{miss}}, E_{\mathrm{vis}}) \rightarrow \mathcal{O}_{\mathrm{sig}}$

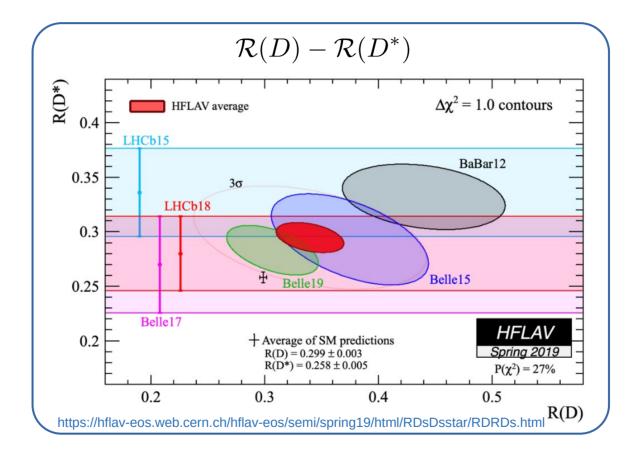

- $E_{\text{ECL}} \mathcal{O}_{\text{sig}}$ distributions of all samples are fit simultaneously, constraining $\mathcal{R}(D^{(*)0}) = \mathcal{R}(D^{(*)+})$
- free parameters: signal yields, normalization yields, $B \to D^{**} l \nu$ yield, feed-down $D^{(*)}$

 $\mathcal{R}(D) = 0.307 \pm 0.037 \,(\text{stat}) \pm 0.016 \,(\text{syst})$ $\mathcal{R}(D^*) = 0.283 \pm 0.018 \,(\text{stat}) \pm 0.014 \,(\text{syst})$

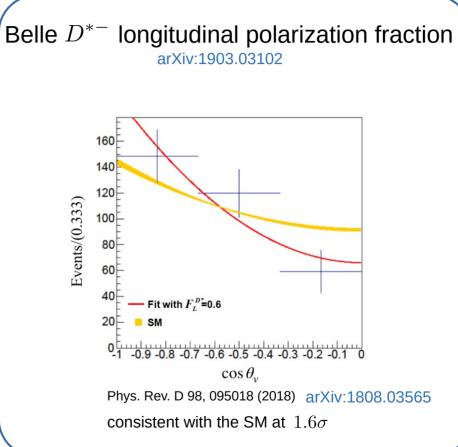
Most precise values to date!

Main systematic uncertainties

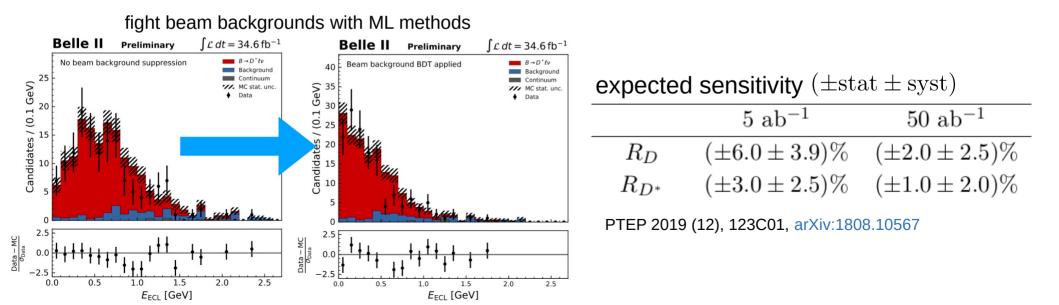
Source	$\Delta \mathcal{R}(D)$ (%)	$\Delta \mathcal{R}(D^*)$ (%)
D^{**} composition	0.76	1.41
PDF shapes	4.39	2.25
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12



Summary of existing LHCb measurements


- so far $\mathcal{R}(D)$ not measured: lower \mathcal{B} , no D* mass constraint, significant D^* feed-down

Consistency with the SM predictions


 $_{\rightarrow}$ present world average of $~\mathcal{R}(D)-\mathcal{R}(D^*)$ deviates from the SM with significance of $\sim 3.1\sigma$

Belle τ polarization measurement Phys. Rev. D 97 (1), 012004, arXiv:1709.00129 $= \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \quad \Gamma^\pm - \tau \text{ helicity}$ $P_{\tau}(D^{(*)})$ $P_{\tau}(D^*)$ $\Delta \chi^2$ 0.5 -0.5 -1.5 $R(D^*)$ w.a. -2 0.1 0.15 0.25 0.3 0.35 0.45 0.2 0.4 R(D*) SM expectation Phys. Rev. D 88, 094012 (2013) arXiv:1309.0301

Prospects @ Belle II

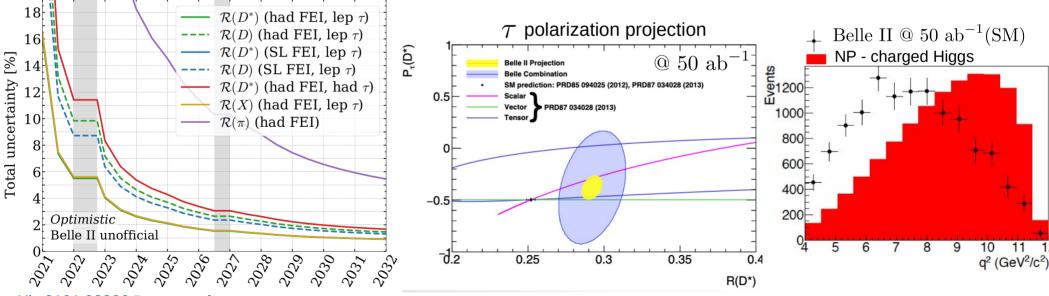
- uncertainty in existing B-factory measurements largely statistically dominated
- but increased luminosity at Belle II with higher beam background levels will provide very challenging environment \rightarrow novel methods
- relevant input to ${\cal R}(D^{(*)})$ anomaly already with $\sim 0.5~{
 m ab}^{-1}$ (summer 2022)

$\mathcal{R}(D^{(*)})$ systematic uncertainty considerations

		Main Systematics in existing Delie medsurements						
			Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)		
f		Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}		
		MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$		
	-	$B \to D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%		
		Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$		
t		Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%		
		Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}\%$		

Main systematics in existing Belle measurements

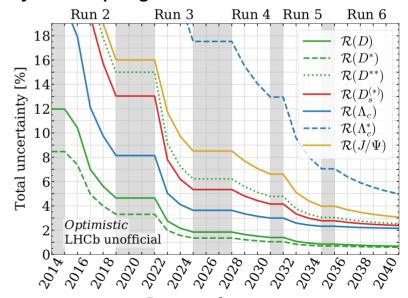
PDF templates, efficiencies \rightarrow reducible with larger MC samples


- dedicated measurements of $B \to D^{**} \ell \nu_{\ell}$ and exclusive hadronic B decays (e.g. $B \to D^* \pi^+ X$)
- improved modeling of $B \to D^{(*)} \ell / \tau \nu$ form factors, lepton id. efficiencies, etc.

- with hadronic tagging Belle II will also have access to $\mathcal{R}(X_c)$

 \rightarrow hadronic model independent test of LFU

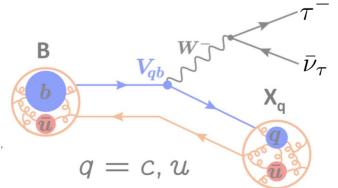
- with more data other observables will become increasingly important


- \rightarrow angular correlations, polarizations, asymmetries
- $\rightarrow\,$ many of these much easier accessible at Belle II w.r.t LHCb

arXiv:2101.08326 Data sample up to year

Prospects @ LHCb

- all existing LHCb measurements use Run 1 data only (3 fb-1)
- statistical uncertainties already at the level of systematic uncertainties \rightarrow many contributions will get reduced with larger data samples
- many updates (+ 6 fb-1 of Run 2 data) + new analyses in progress
 - $\mathcal{R}(D^+)$
 - $\mathcal{R}(D^*)$ (electron muon)
 - Combined measurement $\mathcal{R}(D^*)$ $\mathcal{R}(D^0)$
 - $\mathcal{R}(D^{**})$
 - $\mathcal{R}(D_s^*)$
 - *R*(*J*/Ψ)
 - $\mathcal{R}(\Lambda_c^*)$ B. Mitreska @ EPS2021



arXiv:2101.08326

Data sample up to year

Summary

- semi-tauonic b
 ightarrow c au
 u decays provide powerful probes of the Standard Model (SM)
- many possible observable \rightarrow but experimentally challenging
- in the last decade several measurements indicating enhanced rates of $b \to c \tau \nu$ compared with the SM predictions.
- complementary contributions from B factories and LHCb
- Belle II will provide important contributions to resolution of present anomalies already with $\sim 0.5~ab^{-1}~$ of collected data (summer 2022)

