

LFV $6 \rightarrow sll'$ transitions at Belle and Belle II

ANOMALIES AND PRECISION IN THE BELLE II ERA - WORKSHOP, 6-8.09.2021

Gaetano de Marino* on behalf of the Belle and Belle II collaboration

*demarino@ijclab.in2p3.fr - Université Paris-Saclay, CNRS/IN2P3, IJCLab

LFV AND B ANOMALIES

Lepton Flavor Violating (LFV) decays:

- Forbidden in the Standard Model w/o neutrino-oscillation
- Can occur via ν mixing but are highly suppressed (m_{ν}^2/m_W^2) – well beyond any experimental sensitivity

Recent measurements of b-hadron decays have provided experimental indications of the lepton flavor universality violation (LFUV) - deviations from:

- μ/e universality in $b \to s \ell \ell$ neutral-current transitions
- τ/μ (and τ/e) universality in $b \rightarrow c\ell\nu$ charged-current transitions

$\mathsf{LFU} \overset{\mathsf{BSM}}{\longleftrightarrow} \mathsf{LF}$

Numerous extensions to the SM have been proposed* to connect the LFUV to the LFV, predicting significantly enhanced decay rates in $b \rightarrow se\mu$ or $b \rightarrow s\tau\mu$

The observation of LFV in the charged sector would be a clear sign of physics beyond the Standard Model!

$b \rightarrow s \ell \ell' \text{TRANSITIONS}$

 $B \to K^{(*)}\ell\ell' \longrightarrow$ $B_{s} \to \ell\ell' \longrightarrow$ $B_{s} \to \phi\ell\ell' \longrightarrow$

Only possible @Y(5S) resonance
 Belle: 121.4 fb⁻¹

Currently a very interesting topic in Belle (II)

physics program (LFU and LFV in FCNC)

Belle II: ~5 ab⁻¹* by 2031

 $\Lambda_{\rm b} \to \Lambda \ell \ell' \longrightarrow E$

Beyond B-factories reach

$B \rightarrow \ell \ell'$ **2-body dynamics**

Leptons energy is monochromatic

 ${\mathscr C}$ has p* almost beyond endpoint of SLB decays

 $B \rightarrow K \ell \ell'$ 3-body dynamics

The final states topologically resemble

 $b \rightarrow c \ell \nu \text{ modes} (\text{high-b.r.'s})$

 \Rightarrow very large backgrounds

Will be focusing on $B \rightarrow K^{(*)} \ell \ell'$ searches at Belle and prospects at Belle II

With a mention to $B_d \rightarrow \tau \ell$ measurement

 $*\sim2.9\times10^8~B_{\rm s}^{(*)0}\overline{B}_{\rm s}^{(*)0}$ pairs

EXPERIMENTAL STATUS

	Mode	U.L. (90% CL)	Exp.	
	B+→K+µ·e+	7.0 x 10 ^{.9}	LHCb	3fb ⁻¹
		3.0 x 10 ⁻⁸	Belle	
	B+→K+µ+e [.]	6.4 x 10 ⁻⁹	LHCb	
		8.5 x 10 ⁻⁸	Belle	
µ/e	B⁰→Kºµe	3.8 x 10 ⁻⁸	Belle	711fb ⁻¹
	B⁰→K*ºµ+e [.]	1.2 x 10 ⁻⁷	Belle	
	B⁰→K*⁰µ⁻e+	1.6 x 10 ⁻⁷	Belle	
	B⁰→K*ºµe	1.8 x 10 ⁻⁷	Belle	
	В+→К+тµ	4.8 x 10 ⁻⁵	BaBar	400 er -1
τ / ℓ	В+→К+те	3.0 x 10 ⁻⁵	BaBar	433ID -
	В+→К+т+µ [.]	3.9 x 10⁻⁵	LHCb	9fb ⁻¹

- LFV searches containing 1st and 2nd generation leptons are often performed as ``incidental" studies along with related non-LFV modes
- Experimental limits on μ/e LFV modes ($\mathcal{O}(10^{-7})$) are more stringent than $\tau/\hat{\ell}$ ($\mathcal{O}(10^{-5})$)
- Models of LFV can produce signatures with different charge configurations $(\ell^+ \ell^{'-}, \ell^- \ell^{'+}) \Rightarrow$ both limits

are provided, in addition to the sum

$\mathbf{B^0} ightarrow \mathbf{K^{*0}} \mathbf{e}\mu$ at belle

- Updated the BaBar result with ~3x larger statistics and provides the most stringent limits to date
- Vertex information of the four tracks $K\pi\mu e$
- 2 Multivariate analyzers constructed from NN
 - 1. Distinguish BB events from qq using event topology and flavor-tagging information of the non-signal B
 - 2. Reduce BB background

Both B's decay SL $B \rightarrow D^{(*)} (\rightarrow X \ell \nu) X \ell \nu$ Hadronic decay with mis-ID

- Peaking background $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) J/\psi (\rightarrow \ell^+ \ell^-)$ (reduced with vetoes)
- **1-D** ML fit to the M_{bc} distribution

$M_{\rm bc} = \sqrt{(E_{\rm beam}/c^2)^2 - (p_{\rm B}^*/c)^2}$
$E_{beam} = \sqrt{s}/2$

Mode	U.L. (90% CL)
B ⁰ →K ^{*0} µ+e [.]	1.2 x 10 ^{.7}
$B_0 \rightarrow K_{*0}h_{-}e_{+}$	1.6 x 10 ⁻⁷
B⁰→K*ºµe	1.8 x 10 ⁻⁷

$\mathbf{B} \rightarrow \mathbf{K} \mathbf{e} \mu$ AT BELLE

- Come as a by-product of LFU tests and benefit from R_K(*) measurements updates/improvements
- Both neutral and charged $B's \Rightarrow K = K^+, K_S^0$
- Similar background as for $B \to K^* \mu e$, suppressed via a single NN with output ${\mathcal O}$
- D^0 and J/ψ vetoes applied
- **3-D** ML fit to the M_{bc} , ΔE , and \mathcal{O}' distributions
- Use 89 fb⁻¹ off-resonance data (60 MeV below $\Upsilon(4S)$) to constrain yields from continuum processes ($q\bar{q}, \tau^+\tau^-$)

Mode	U.L. (90% CL)	[Belle, 1908.01848]
B+→K+µ+e [.]	8.5 x 10 ⁻⁸	
B+→K+µ [.] e+	3.0 x 10 ⁻⁸	
B ⁰ →K ⁰ µe	3.8 x 10 ⁻⁸	BELLE

$B \rightarrow K\tau \ell SEARCHES \ell = \{e, \mu\}$

Experimentally, final states involving τ's generally require special techniques due to the presence of missing energy (neutrinos) and lack of a distinctive τ signature

 To overcome these limitations, B-tagging is commonly used (full reconstruction of one B)

• Unlike SM processes like $B \rightarrow D^{(*)}\tau\nu$, $B \rightarrow \tau\nu$ etc. this channel has the unique property of having the only neutrino coming from the $\tau \Rightarrow$ can compute τ recoil mass

The two B's are back to back in the CM frame \Rightarrow

$$E_{B_{tag}}^{*} = E_{B_{sig}}^{*} = \sqrt{s/2}$$
$$\overrightarrow{p}_{B_{tag}}^{*} = -\overrightarrow{p}_{B_{sig}}^{*}$$

$$\mathbf{p}_{\tau} = \mathbf{p}_{\mathrm{e^+e^-}} - \mathbf{p}_{\mathrm{K}} - \mathbf{p}_{\ell} - \mathbf{p}_{\mathrm{B_{tag}}}$$

B-TAGGING ALGORITHMS From FR to FEI and beyond...

- The Full Event Interpretation is expected to improve previous algorithms (FR @ Belle, SER @ BaBar) with a higher tag-side efficiency
- Belle II Software framework allows to perform analyses on Belle dataset

	~10% purit	y ∼5% purity
Tagging Algo.	Had B+/B ^o	SL B+/Bº
FR (Belle MC)	0(0.3)/0(0.2)	@(0.3)/@(0.3)
FEI (Belle MC)	0(0.8)/0(0.5)	Ø(1.8)/Ø(2.0)
یا Comparable performa	ance on Belle II M	C

FEI: Comput Softw Big Sci 3, 6 (2019)

SER: 1406.6311, Sec. 7.4.1.1

- SLtag ... beyond hadronic tagging!
 - First R(D*) measurement with SL tag [Belle, <u>1607.07923</u>]
 R(D)-R(D*): SL FEI, Improved precision [Belle, <u>1910.05864</u>]
 PRL124, 161803
- Inclusive tag ... beyond FEI!
 - $B^+ \rightarrow K^+ \nu \nu$ @ Belle II: Result with 63 fb⁻¹ is already competitive with previous measurements @ Belle and BaBar [Belle II, <u>2104.12624]</u>
 - $B^+ \rightarrow \mu \nu$ [Belle, <u>1911.03186</u>] etc...

FR: 1102.3876

B-TAGGING APPROACHES FOR $B^+ \to K^+ \tau \ell$

- Ongoing effort with Belle dataset and Belle II software
 - Hadronic FEI well advanced status (Sensitivity $\mathcal{O}(10^{-5})$)

- Approach used also in BaBar's publication [BaBar, PRD86, 012004]
- One prong au decays are considered
- Background depends on charge configuration
 - $OS_{\mu}: B^{+} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})X^{+}$
 - $SS_{\ell}: B^+ \to \overline{D}^0(\to K^+X^-)\ell^+$
- MVA is adopted for background suppression
- Fit to m_{τ} distributions

 $\tau \rightarrow \text{lepton}: 35\%$ $\tau \rightarrow 1-\text{prong}: 85\%$ $\tau \rightarrow 3\pi: 9\%$

Reminder

B-TAGGING APPROACHES FOR $B^+ \to K^+ \tau \ell$

- Ongoing effort with Belle dataset and Belle II software
 - Hadronic FEI well advanced status (Sensitivity $\mathcal{O}(10^{-5})$)
 - Hadronic vs. Semileptonic FEI

*Sum of exclusive modes

- Hadronic tag
 - Knowledge of the full B_{tag} 4-momentum \rightarrow better resolution on m_{τ}
 - Very demanding in terms of efficiency ($\varepsilon_{\rm had}^{\rm FEI} \lesssim 1\%$)
- SL tag
 - $\overrightarrow{p}_{B_{tag}}$ is unknown due to neutrino \longrightarrow worse resolution on m_{τ} but still usable as long as signal side is well reconstructed
 - Higher tagging efficiency ($\varepsilon_{
 m sl}^{
 m FEI}$ ~2%)

B-TAGGING APPROACHES FOR $B^+ \to K^+ \tau \ell$

- Ongoing effort with Belle dataset and Belle II software
 - Hadronic FEI well advanced status (Sensitivity $\mathcal{O}(10^{-5})$)
 - Hadronic vs. Semileptonic FEI
 - More inclusive b-tagging approaches

- A strategy to increase tagging efficiency while holding off the background
 - Enlarge the FEI-B⁺_{tag} sample by adding D⁰X candidates
 [c-tag ↔ D⁰-tag for charged B]
 - Treat separately HAD and SL tags
 - Good knowledge of BB simulation is necessary
- $B^0 \rightarrow K^0_s \tau \ell$ will be studied, although with variations due to different nature of neutral B decays

μ/τ LFV AND LEPTOQUARKS

A single LQ with $\rm m_{LQ}\,{\sim}\,{\mathcal O}(1\,{\rm TeV})$ can satisfy both $R_{K^{(*)}} < R_{K^{(*)}}^{SM}$ and $R_{D^{(*)}} > R_{D^{(*)}}^{SM}$ and could enhance the rate of $b \rightarrow s \mu \tau$ processes $U_1 \sim ({\bf 3}, {\bf 1})_{2/3}$ b U_1 [A. Angelescu et al., 2103.12504] 10^{-4} LHCb, BaBar 10^{-5} ${\cal B}(B \to K \mu au)$ 10^{-6} $\overline{3} \text{ ab}^{-1}$ 10^{-7} $140 {\rm ~fb}^{-1}$ 10^{-8} $m_{U_1} = 1.8 \text{ TeV}$ Belle Belle - II10-9 [..... 1.1.1110 10^{-12} 10^{-10} 10^{-16} 10^{-8} 10^{-14} 10^{-6} $\mathcal{B}(au o \mu \phi)$ 1101.0755

Predictions on $B \to K\tau\mu$, $B_s \to \tau\mu$, $\tau \to \mu\gamma$ b.r.'s using the results of a U_1 simplified model fit.

Lower and upper bounds on the exclusive b → sµτ processes as obtained from the constraints arising both from the low-energy observables and those coming from the current direct searches at the LHC

- $b \rightarrow d\ell \ell'$ related mode!
- Hadronic B-tagging (Belle algorithm Full Reconstruction)
- $B_{tag} \ell$ with $M_{miss} \in [1.4, 2.2] \text{ GeV}/c^2$
- (Smooth) Background mainly from $b \rightarrow c(u)\ell\nu$
- Peaking background due to $B^0 \rightarrow D^{(*)-}\pi^+$ in $\tau\mu$ channel
- Unbinned extended ML fit to M_{miss} distribution

Reminder

$$E_{B_{tag}}^{*} = E_{B_{sig}}^{*} = \sqrt{s/2}$$

$$\overrightarrow{p}_{B_{tag}}^{*} = -\overrightarrow{p}_{B_{sig}}^{*}$$

Events/(16 MeV/c²)

60

20

Data

BG

SG+BG Fit

 $B^0 \rightarrow D\pi$

SG (b.r. 10⁻⁴)

 $B \to \tau \mu$

2

2.2

18

Preliminary results @ 90% C.L.

 $\begin{array}{lll} \mbox{Belle data} & \mathscr{B}(B \to \tau \mu) < 1.5 \times 10^{-5} & \mbox{Slightly worse than LHCb} \\ & \mbox{711 fb}^{\text{-1}} & \mathscr{B}(B \to \tau e) < 1.6 \times 10^{-5} & \mbox{Most precise} \end{array}$

SUMMARY (I) and projections

SUMMARY (II)

Anomalies

es 🛛 🗧 Hints of 🗗

LFV in FCNC processes enhanced for many NP scenarios (LQ?)

Belle Still delivering physics results which are sensitive to the BSM

- $B \rightarrow K^{(*)}\mu e$: go along LFU measurements, some of them the most stringent to date
- $B^0 \rightarrow \tau \ell$: new result, $\mathcal{O}(10^{-5})$
- $B^+ \rightarrow K^+ \tau \ell$: coming soon, $\mathcal{O}(10^{-5})$

Belle II		First EWP decays show the high capabilities of Belle II	Seema Choudhury's talk!
	1	Not only larger statistics, but also improved software/tools (B-tagging with <u>FEI and beyond!</u>)	Filippo Dattola's talk!
		Will contribute to further constrain NP models with the help of	
		• $ au$ LFV searches	Alberto Martini's talk!
		 Direct searches at LHC 	
		 Complementary contribution of LHCb for many channels 	

THANK YOU FOR YOUR ATTENTION!

LHCb UPGRADES

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	203+
		R	lun III					R	un IV				Rui	n V
LS2						LS3					LS4			
LHCb UPGF	40 MHz RADE I	<i>L</i> =	= 2 x 10	33	LHCb Consol UPGR/	lidate: ADE Ib		L	$= 2 \times 1$ 50 fb ⁻¹	0 ³³	LHCb UPGR/	ADE II	L=1-2. 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase	6 I Upgr	<i>L</i> =	= 2 x 10	34	ATLAS Phase	II UPG	RADE	L	$= 5 \times 10^{-1}$	C 0 ³⁴			$\begin{array}{c} \textbf{HL-L} \\ L = 5 \end{array}$	HC x 10 ³⁴
CMS Phase	I Upgr	4	300 fb ⁻¹		CMS Phase	II UPG	RADE						3000) fb-1
Bell e II				5 ab-1		L = 6	$x 10^{35}$		5	$50 ab^{-1}$				

EPS-HEP Conference 2021 Franz Muheim - LHCb highlights

LHCb physics reach with the Phase-I and Phase-II upgrades

Aim at collecting 50 fb⁻¹ in Run3-4 and 300 fb⁻¹ in Run5-6 arXiv:1808.08865 ✓ Collected ~9 fb⁻¹ of data in Run1-2

SEMI-EXCLUSIVE RECONSTRUCTION AT BABAR

D^0 decays	D^+ decays	D^{*+} decays	D^{*0} decays	D_s^+ decays	D_{s}^{*+} decays	J/ψ decays
$K^{-}\pi^{+}\pi^{0}$	$\frac{K}{K^{-}\pi^{+}\pi^{-}\pi^{0}}$	$D^{\circ}\pi^{+}$ $D^{+}\pi^{0}$	$D^{\circ}\pi^{\circ}$ $D^{0}\gamma$	$\phi\pi^\circ K^0_{ m s}K^+$		$\mu^+\mu^-$
$K^{-}3\pi$ $K^{-}K^{+}$	$K_s^0 \pi^+$			5	π^0 decays	K ⁰ decays
$K_s^0 \pi^0$	$K_s^0 \pi^+ \pi^0$ $K_s^0 \pi^+ \pi^+ \pi^-$				γγ	$\pi^+\pi^-$
$K_s^0 \pi^+ \pi^-$ $K_s^0 \pi^+ \pi^- \pi^0$	$K^+K^-\pi^+$					
$\pi^{-}\pi^{+}$	$K^+K^-\pi^+\pi^0$					
$\pi^-\pi^+\pi^0$						

$$\begin{split} B_{\text{tag}} &\to D_{\text{seed}} Y^{\pm} & n_1 \in [1,5] \\ Y^{\pm} &= n_1 \pi^{\pm} + n_2 K^{\pm} + n_3 \pi^0 + n_4 K_s^0 & n_2 \in [0,2] \\ &n_3 \in [0,2] \\ &n_4 \in [0,1] \\ &\{0,1,0,0\}, \{1,0,1,0\}, \{2,0,0,0\}, \{0,0,2,0\} * \end{split}$$

*Expansions for neutral Y

BELLE II IS TAKING DATA NOW!

World Record Luminosity $\mathscr{L}_{peak} = 3.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (June 22th 2021) Currents ~0.8 A (LER)/0.7 A (HER)

Many rediscoveries 2 papers (dark sector: PRL 124, 141801 (2020) PRL 125, 161806 (2020)) 1st B physics result arXiv:2104.12624 D lifetimes

stay tuned!

A long journey ...

- 1st Long shutdown in 2022 (PXD, TOP)
- 2nd Long shutdown in ~2026 (QCS, RF)
- The target integrated luminosity is 50 ab⁻¹ by ~2031

TABLES

Decay Mode	$N_{B\overline{B}}$	${\mathcal B}$ upper limit			
	(10^{6})	(90% C.L.)			10 11 1
Lepton flavor viol	ating mo	des (light flavors):	Decay Mode	$N_{B\overline{B}}$	${\cal B}$ upper limit
$B^0 \to \mu^{\pm} e^{\mp}$	85	17×10^{-8}		(10^{6})	(90% C.L.)
$B^0 \rightarrow \mu^{\pm} e^{\mp}$	384	9.2×10^{-8}	Lepton flavor viole	ating modes	s (including τ):
$B^+ \rightarrow \pi^+ \mu^\pm e^\mp$	230	17×10^{-8}	$B^0 \to \tau^{\pm} e^{\mp}$	378	2.8×10^{-5}
$B^0 \rightarrow \pi^0 \mu^{\pm} e^{\mp}$		14×10^{-8}	$B^0 \to \tau^{\pm} \mu^{\mp}$		2.2×10^{-5}
$B \rightarrow \pi \mu^{\pm} e^{\mp}$		9.2×10^{-8}	$B^+ \to K^+ \tau^- \mu^+$	472	4.5×10^{-5}
$B^+ \rightarrow K^+ \mu^- e^+$	229	9.1×10^{-8}	$B^+ \to K^+ \tau^+ \mu^-$		2.8×10^{-5}
$B^+ \rightarrow K^+ \mu^+ e^-$		13×10^{-8}	$B^+ \to K^+ \tau^\mp \mu^\pm$		4.8×10^{-5}
$B^+ \rightarrow K^+ \mu^{\mp} e^{\pm}$		9.1×10^{-8}	$B^+ \to K^+ \tau^- e^+$		4.3×10^{-5}
$B^0 \rightarrow K^0 \mu^{\mp} e^{\pm}$		27×10^{-8}	$B^+ \to K^+ \tau^+ e^-$		1.5×10^{-5}
$B \longrightarrow K \mu^{\pm} e^{\pm}$		3.8×10^{-8}	$B^+ \to K^+ \tau^\mp e^\pm$		3.0×10^{-5}
$B^+ \to K^{*0} \mu^- e^+$		5.6×10^{-8}	$B^+ \to \pi^+ \tau^- \mu^+$		6.2×10^{-5}
$D \rightarrow K \mu e^{+}$ $D^{+} \rightarrow K^{*0} \mu^{+} e^{-}$		24×10^{-8}	$B^+ \to \pi^+ \tau^+ \mu^-$		4.5×10^{-5}
$D^+ \rightarrow K^- \mu^+ e^-$ $D^+ = K^{*0} = \pm +$		34×10^{-8}	$B^+ \to \pi^+ \tau^\mp \mu^\pm$		7.2×10^{-5}
$B^+ \rightarrow K^+ \mu^+ e^+$		58×10^{-8}	$B^+ \to \pi^+ \tau^- e^+$		7.4×10^{-5}
$B^+ \rightarrow K^{*+} \mu^- e^+$		130×10^{-8}	$B^+ \to \pi^+ \tau^+ e^-$		2.0×10^{-5}
$B^{+} \to K^{*+} \mu^{+} e^{-}$		99×10^{-8}	$B^+ \to \pi^+ \tau^\mp e^\pm$		7.5×10^{-5}
$B^+ \to K^{*+} \mu^+ e^\pm$		140×10^{-8}			
$B \to K^* \mu^{\mp} e^{\pm}$		51×10^{-8}			

LHC*b* **MEASUREMENT** B⁺ \rightarrow K⁺ $\mu^{-}\tau^{+}$ (using B^{*0}_{s2})

- 9 fb⁻¹ @ 7, 8 and 13 TeV (Run1 & Run2)
- Use $B_{s2}^{*0} \rightarrow B^+K^-$ decay: about 1% of B^+ production
- $K^+\mu^-$ pair from secondary vertex plus additional track t⁺

- Expect peak at τ mass also for B not from B_{s2}^{*0} decay, but wider distribution
- $K^+\mu^-\tau^+$ experimentally preferred over $K^+\mu^+\tau^-$ as it has a lower background from sSL B decays, because CF decays of the D mesons are likely to lead to K's of the same charge as the muon

- Remaining backgrounds produce smooth m²_{miss} distributions
- Search performed in bins of final BDT output with increasing signal sensitivity

JHEP 06 (2020) 129 S. Weber - ICHEP 2020

Mode	U.L. (90% CL)	Exp.
$B^+ \rightarrow K^+ \tau \mu$	4.8 x 10⁻⁵	BaBar
B+→K+τe	3.0 x 10 ⁻⁵	BaBar
B+→K+τ+µ [.]	3.9 x 10 ⁻⁵	LHCb

STATUS OF R_K AND PROSPECTS

Semi-leptonic B decays are showing tensions with the SM predictions that are connected to a possible violation of the <u>Lepton Flavor Universality</u> (LFU). Different behaviour of lepton generations in the process:

 $b \rightarrow sl^{+}l^{-} \text{ (neutral current): } \mu \text{ vs. e}$ $R_{K} = \frac{\Gamma \left(B \rightarrow K \mu^{+} \mu^{-} \right)}{\Gamma \left(B \rightarrow K e^{+} e^{-} \right)} \bigg|_{q^{2} \in (q_{\min}^{2}, q_{\max}^{2})}$ $\frac{R_{K}^{exp} < R_{K}^{SM} \sim 1}{R_{K}^{exp} < R_{K}^{SM} \sim 1}$

CURRENT STATUS OF R(D(*))

$$\begin{split} \mathsf{R}(\mathsf{D}) &= 0.375 \pm 0.064 \pm 0.026 \\ \mathsf{R}(\mathsf{D}^*) &= 0.293 \pm 0.038 \pm 0.015 \end{split} (Had tag) \end{split}$$

Belle15

$R(D) = 0.307 \pm 0.037 \pm 0.016$	
$R(D^*) = 0.283 \pm 0.018 \pm 0.014$	(SL tag)

LHCb

$R(D) = 0.336 \pm 0.027 \pm 0.030$	2015
$R(D) = 0.280 \pm 0.018 \pm 0.029$	2018

Average

$$\begin{split} R(D) &= 0.340 \pm 0.027 \pm 0.013 \\ R(D^*) &= 0.295 \pm 0.011 \pm 0.008 \end{split}$$

R(D) and R(D^{*}) exceed the SM predictions given in the last row of the table above, by 1.4 σ and 2.5 σ respectively. Considering the R(D)-R(D^{*})) correlation of -0.38, the resulting combined χ^2 is 12.33 for 2 degree of freedom, corresponding to a p-value of 2.07 x 10⁻³. The difference with the SM predictions reported above, corresponds to about 3.08 σ <u>HFLAV</u>

SHAPE VARIABLES FOR CONTINUUM SUPPRESSION

Variables related to the B meson direction: the spin-1 Υ (4S) decaying into two spin-0 B mesons results in a sin² Θ_B angular distribution with respect to the beam axis; in contrast for e⁺e⁻ \rightarrow ff events, the spin-1/2 fermions f, and its two resulting jets, are distributed following a 1 + cos² Θ_B distribution. Using the angle Θ_B between the reconstructed momentum of the B candidate (computed in the Υ (4S) reference frame) and the beam axis, the variable **[cos\Theta_B]** allows one to discriminate between signal B decays and the B candidates from continuum background.

The Fox-Wolfram moments: for a collection of N particles with momenta pi, the k-th order Fox-Wolfram moment Hk is defined as

$$H_{k} = \sum_{i,j}^{n} |\overrightarrow{p}_{i}| |\overrightarrow{p}_{j}| P_{k}(\cos \theta_{ij})$$

where Θ_{ij} is the angle between p_i and p_j , and P_k is the k-th order Legendre polynomial. Notice that in the limit of vanishing particle masses, $H_0 = 1$; that is why the normalized ratio $R_k = H_k/H_0$ is often used, so that for events with two strongly collimated jets, R_k takes values close to zero (one) for odd (even) values of k. These sharp signatures provide a convenient discrimination between events with different topologies.

 $R_n = \frac{H_n}{H_0}$

Thrust: for a collection of N momenta p_i (i = 1,...N), the thrust axis T is defined as the unit vector along which their total projection is maximal; the thrust scalar T (or thrust) is a derived quantity defined as

$$T = \frac{\sum_{i=1}^{N} |\vec{T} \cdot \vec{p}_{i}|}{\sum_{i=1}^{N} |\vec{p}_{i}|}$$

For a BB event, both B mesons are produced almost at rest in the $\Upsilon(4S)$ rest frame, so their decay particles are isotropically distributed, their thrust axes are randomly distributed, and thus $|\cos \Theta_T|$ follows a uniform distribution in the range [0,1]. In contrast for $q\bar{q}$ events, the momenta of particles follow the direction of the jets in the event, and as a consequence the thrusts of both the B candidate and the ROE are strongly directional and collimated, yielding a $|\cos \Theta_T|$ distribution strongly peaked at large values.

Cleo Cones: Set of nine variables corresponding to the momentum flow around the thrust axis of the B candidate, binned in nine cones of 10° around the thrust axis as illustrated

SUPERKEKB ACCELERATOR

THEORY - \mathbb{U}_1 MODEL

Weak singlet vector LQ that can simultaneously explain R_K and R_D - Absence of the tree level constraint coming from $\mathscr{B}(B \to K^{(*)} \nu \overline{\nu})$. Such NP extension is non-renormalizable at loop level: additional assumptions must be specified (e.g. completions involving Z' and a color-octet of vector bosons).

$$U_1 = (3, 1, 2/3)$$

 $Q = Y + T_3 = 0 + 2/3 = 2/3$

"Simplified models with LQ states seem to be favored. Among them, the U₁ case stands for simplicity & phenomenological success." G. Isidori (FCPC)

$$\mathcal{L} \supset + x_{1\,ij}^{LL} \bar{Q}_L^{i,a} \gamma^{\mu} U_{1,\mu} L_L^{j,a} + x_{1\,ij}^{RR} \bar{d}_R^i \gamma^{\mu} U_{1,\mu} e_R^j + x_{1\,ij}^{\overline{RR}} \bar{u}_R^i \gamma^{\mu} U_{1,\mu} \nu_R^j + \text{h.c.}.$$

'Genuine' LQ: does not possess "diquark" couplings due to the SM quantum number assignment.

x denotes the coupling matrices of scalar (vector) leptoquarks with the quark-lepton pairs **arXiv:1603.04993v3[hep-ph]**

arXiv:2103.12504v1 [hep-ph]

Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$	$\boxed{R_{K^{(*)}} \ \& \ R_{D^{(*)}}}$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×	×
S_1 (3 , 1 , 1/3)	×	\checkmark	×
R_2 (3 , 2 , 7/6)	×	\checkmark	×
U_1 (3 , 1 , 2/3)	\checkmark	\checkmark	\checkmark
U_3 (3 , 3 , 2/3)	\checkmark	×	×

TABLE III. Summary of the LQ models which can accommodate $R_{K^{(*)}}$ (first column), $R_{D^{(*)}}$ (second column), and both $R_{K^{(*)}}$ and $R_{D^{(*)}}$ (third column), without being in conflict with existing constraints. See text for details.

THEORY - PREDICTION ON BR

Lower and upper bounds on the exclusive $b \rightarrow s\mu\tau$ processes as obtained in the minimal U₁ scenario from the constraints arising both from the low-energy observables (gray points) and those coming from the current direct searches at the LHC (red points), the subset of which (blue points) correspond to the projected integrated luminosity of 3 ab⁻¹

[...] In particular we find the lower bound on the LFV mode B(B $\rightarrow K\mu\tau$) few×10⁻⁷ for any mass of m_{U1} in which Yukawa couplings are kept within the perturbativity limits and in the minimal U1 scenario in which only left-handed couplings are allowed to take values different from zero. The upper bound is superseded by the current experimental bound B(B $\rightarrow K\mu\tau$)^{exp} < 4.8×10⁻⁵, which can be improved both at LHCb and Belle II. Improving that bound by two orders of magnitude can therefore either exclude or, if observed, corroborate the validity of the minimal U1 scenario.

BABAR RESULTS ON $B \rightarrow h\tau \ell$

TABLE IV: Results for the observed sideband events $N_{sb,i}$, signal-to-sideband ratio $R_{b,i}$, expected background events b_i , number of observed events n_i , signal efficiency $\epsilon_{h\tau\ell,i}$ (assuming uniform three-body phase space decays) for each τ channel iand $B \to h\tau\ell$ [9] branching fraction central value and 90% C.L. upper limits (UL). All uncertainties include statistical and systematic sources.

							$\mathcal{B}(B o h au$	ℓ) (×10 ⁻⁵)
Mode	τ channel	$N_{sb,i}$	$R_{b,i}$	b_i	n_i	$\epsilon_{h au\ell,i}$	central value	90% C.L. UL
	e	22	0.02 ± 0.01	0.4 ± 0.2	2	$(2.6 \pm 0.2)\%$		
$B^+ \to K^+ \tau^- \mu^+$	μ	4	0.08 ± 0.05	0.3 ± 0.2	0	$(3.2\pm0.4)\%$	$0.8 \ ^{+1.9}_{-1.4}$	< 4.5
	π	39	0.045 ± 0.020	1.8 ± 0.8	1	$(4.1\pm0.4)\%$		
	e	5	0.03 ± 0.01	0.2 ± 0.1	0	$(3.7 \pm 0.3)\%$		
$B^+ \to K^+ \tau^+ \mu^-$	μ	3	0.06 ± 0.03	0.2 ± 0.1	0	$(3.6\pm0.7)\%$	$-0.4 \ ^{+1.4}_{-0.9}$	< 2.8
	π	153	0.045 ± 0.010	6.9 ± 1.5	11	$(9.1\pm0.5)\%$		
	e	6	0.095 ± 0.020	0.6 ± 0.1	2	$(2.2 \pm 0.2)\%$		
$B^+ \to K^+ \tau^- e^+$	μ	4	0.025 ± 0.010	0.1 ± 0.1	0	$(2.7\pm0.6)\%$	$0.2 \ ^{+2.1}_{-1.0}$	< 4.3
	π	33	0.045 ± 0.015	1.5 ± 0.5	1	$(4.8\pm0.6)\%$		
	e	8	0.10 ± 0.06	0.8 ± 0.5	0	$(2.8 \pm 1.1)\%$		
$B^+ \to K^+ \tau^+ e^-$	μ	3	0.045 ± 0.020	0.1 ± 0.1	0	$(3.2 \pm 0.7)\%$	$-1.3 \ ^{+1.5}_{-1.8}$	< 1.5
	π	132	0.035 ± 0.010	4.6 ± 1.3	4	$(8.7\pm1.2)\%$		
	e	55	0.017 ± 0.010	0.9 ± 0.6	0	$(2.3 \pm 0.2)\%$		
$B^+ \to \pi^+ \tau^- \mu^+$	μ	10	0.11 ± 0.04	1.1 ± 0.4	2	$(2.9\pm0.4)\%$	$0.4 \ ^{+3.1}_{-2.2}$	< 6.2
	π	93	0.035 ± 0.010	3.3 ± 0.9	4	$(2.8\pm0.2)\%$		
	e	171	0.012 ± 0.003	2.1 ± 0.5	2	$(3.8 \pm 0.3)\%$		
$B^+ \to \pi^+ \tau^+ \mu^-$	μ	89	0.04 ± 0.01	3.6 ± 0.9	4	$(4.8 \pm 0.3)\%$	$0.0 \ ^{+2.6}_{-2.0}$	< 4.5
	π	512	0.050 ± 0.005	25 ± 3	23	$(9.1\pm0.6)\%$		
	e	1	0.050 ± 0.025	0.1 ± 0.1	1	$(2.0 \pm 0.8)\%$		
$B^+ \to \pi^+ \tau^- e^+$	μ	16	0.025 ± 0.010	0.4 ± 0.2	1	$(2.8\pm0.3)\%$	$2.8 \ ^{+2.4}_{-1.9}$	< 7.4
	π	172	0.035 ± 0.008	6.0 ± 1.4	7	$(5.8\pm0.3)\%$		
	e	31	0.033 ± 0.013	1.0 ± 0.4	0	$(2.9 \pm 0.3)\%$		
$B^+ \to \pi^+ \tau^+ e^-$	μ	247	0.012 ± 0.005	3.0 ± 1.2	2	$(4.6\pm0.4)\%$	$-3.1 {}^{+2.4}_{-2.1}$	< 2.0
	π	82	0.07 ± 0.03	5.7 ± 2.5	3	$(3.7 \pm 1.0)\%$		

FEI PERFORMANCE

Tagging efficiency: the fraction of $\Upsilon(4S)$ events which can be tagged **Tag-side efficiency:** the fraction of $\Upsilon(4S)$ events with a correct tag **Tag-side purity:** the fraction of the tagged $\Upsilon(4S)$ events with a correct tag

BELLE2-NOTE-PL-2020-002

Table 1: Summary of the maximum tag-side efficiency of the Full Event Interpretation and for the previously used exclusive tagging algorithms. For the FEI simulated data from the last official Monte Carlo campaign of the Belle experiment were used. The maximum tag-side efficiency on recorded data is lower (see Section 4.1). The numbers for the older algorithms (see Section 3), are not directly comparable due to different selection criteria, like best-candidate selections and selections to suppress non- $\Upsilon(4S)$ events.

	B^{\pm}	B^0				
Hadronic						
FEI with FR channels FEI	$\begin{array}{c} 0.53 \% \\ 0.76 \% \end{array}$	$\begin{array}{c} 0.33 \ \% \\ 0.46 \ \% \end{array}$				
FR SER	$\begin{array}{c} 0.28 \% \\ 0.4 \% \end{array}$	$\begin{array}{c} 0.18 \ \% \\ 0.2 \ \% \end{array}$				
Semileptonic						
FEI	1.80~%	2.04~%				
FR SER	$\begin{array}{c} 0.31 \% \\ 0.3 \% \end{array}$	$\begin{array}{c} 0.34 \ \% \\ 0.6 \ \% \end{array}$				

arXiv:hep-ex/1807.08680v4