

$b ightarrow s \ell \ell$ transitions at Belle II, status and prospects

Seema Choudhury on behalf of the Belle II collaboration

Sep 06 2021

Anomalies and Precision in the Belle II Era - Workshop 6-8 September 2021

SuperKEKB

- Asymmetric e^+ - e^- collider with center-of-mass energy at $B\bar{B}$ threshold, 10.58 GeV.
- Aims to collect 50 ab⁻¹ (50 \times Belle) of data sample by 2031.
- Plan to deliver collision at a peak luminosity of 6.5×10^{35} cm⁻²s⁻¹ (30 times that of KEKB) by;
 - reducing beam size by 20 times.
 - increasing beam current by 1.5 times.

- Recorded luminosity: 213.49 fb⁻¹ till summer 2021.
- Set world record: Highest instantaneous luminosity of $L = 3.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$: Entering the regime of a "Super B factory".

Belle II detector

- Designed to operate with a performance similar or better than Belle.
- New detector (only the structure, the super conducting magnets and the crystals of the calorimeter are re-utilized).
- ullet Increases beam background (imes 10-20)
 - Upgraded trigger system and sub-detectors.

$b \rightarrow s\ell\ell$ transitions

• Rare decay $B \to K^{(*)}\ell^+\ell^-$ involves $b \to s$ quark level transition, which are flavor changing neutral currents. These processes occur through penguin loop and box diagrams in standard model (SM).

- These decays are highly suppressed and have very small BRs ($\mathcal{O}(10^{-7})$).
- They are very sensitive to new physics [PRD 69, 074020 (2004), JHEP 12, 040 (2007).
- New physics can contribute by enhancing or suppressing the decay rates or modifying the angular distribution of the final state particles [PRD 96, 055008 (2017), PRD 96, 093006 (2017), JHEP 01, 093 (2018)].

Lepton-flavor-universality ($R_K \& R_{K^*}$)

$$R_{K^{(*)}} = \frac{B \to K^{(*)} \mu^+ \mu^-}{B \to K^{(*)} e^+ e^-}$$

- SM gauge bosons don't discriminate between different lepton flavors.
- SM prediction is very accurate. $R_{K^{(*)}}^{(SM)} = 1 \pm \mathcal{O} \ (10^{-2})$ [Eur. Phys. J. C76, 440 (2016)].
- LHCb reported a series of anomalies with several modes, $B^0 \to K^{*0} \ell^+ \ell^-$, $B^+ \to K^+ \ell^+ \ell^-$, $\Lambda_b \to p K \ell^+ \ell^-$.
- LHCb [arXiv:2103.11769] shows 3.1σ deviation with 9 fb $^{-1}$ in $q^2 \in [1.1,6]$ GeV $^2/c^4$ in $R_{K^+}=0.846^{+0.042+0.013}_{-0.039-0.012}$.
- LHCb [JHEP 08 (2017) 055] R_{K^*} values are compatible with SM predictions at levels of $2.1-2.3\sigma$ for low $q^2 \in [0.045-1.1]$ GeV $^2/c^4$ and $2.4-2.5\sigma$ at central $q^2 \in [1.1,6.0]$ GeV $^2/c^4$ for a data sample of $3\mathrm{fb}^{-1}$.

Belle II : stat. + syst.

LHCb: stat.

- R_{K^*} tests the lepton-flavor-universality in $B \to K^* \ell^+ \ell^-$.
- Reconstructed 4 decay modes; $B^+ \to K^{*+}(K^+\pi^0, K_S^0\pi^+)\ell^+\ell^ B^0 \to K^{*0}(K^+\pi^-, K_S^0\pi^0)\ell^+\ell^-$.
- Kinematic variables to distinguish signal from background;

$$M_{
m bc} = \sqrt{E_{beam}^2/c^4 - |p_B|^2/c^4} \ \Delta E = E_B - E_{beam}$$

- Background is suppressed using a Neural Network.
- \bullet 103 $^{+13.4}_{-12.7}$ and 139.9 $^{+16.0}_{-15.4}$ events for electron and muon modes.
- $R_{K^{*+}}$, $R_{K^{*0}}$ and $R_{K^{*}}$ are measured for both low and high q^2 bins.
- Results consistent with the SM predictions.
- First result for $R_{K^{*+}}$ measurement.

combinatorial, signal, charmonium, peaking, total

R_{K*} Projections for Belle II

- Statistical uncertainty projections for 1 ab⁻¹, 5 ab⁻¹ and 50.0 ab⁻¹ data samples of Belle II.
- Belle and LHCb central values are used for plotting.
- Expected sensitivity with 1 ab⁻¹, 5 ab⁻¹ and 50.0 ab⁻¹ data samples are $\sim 15\%$, $\sim 6\%$ and $\sim 2\%$ for the whole q^2 region.

Belle II projections

• With 50.0 ab⁻¹ data sample of Belle II, the statistical uncertainty will be $\sim 2\%$ for whole q^2 region and within 3-4% for different q^2 bins, except for [0.045, 1.1] GeV²/ c^4 bin, which will have an uncertainty of \sim 7%.

- Rk tests the lepton-flavor-universality in $B \rightarrow K \ell \ell$
- ullet Decay modes reconstructed, $B^+ o K^+ \ell \ell$ and $B^0 \to K_c^0 \ell \ell$.
- Background from continuum and generic B are suppressed using Neural Network.
- Performed 3D fit in $M_{\rm bc}$. ΔE , and modified NN output (O') to extract the signal yield.
- 137 ± 14 , 138 ± 15 , $27.3^{+6.6}_{5.8}$, and $21.8^{+7.0}_{6.1}$ signal events for $B^+ \to K^+ \mu \mu$, $B^+ \to K^+ ee$, $B^0 \to K_c^0 \mu \mu$, and $B^0 \to K_c^0 ee$.
- R_{K^+} , R_{K^0} , R_K are measured for both low and high a^2 bins.

$$\begin{array}{c} \emph{q}^2 \in [0.1 \text{ , } 4.0]\text{, } [4.0 \text{ , } 8.12]\text{, } \boxed{1.0 \text{ , } 6.0}\text{, } [10.2,\\ 12.8]\text{, } > 14.18\text{, } \text{and } > 0.1 \text{ GeV}^2/c^4 \end{array}$$

• R_K values for various q^2 bins agree with the SM prediction.

continuum, generic B. signal, total

State-of-the-art of R_K

- LHCb shows result for only $B^+ \to K^+ \ell \ell$.
- Belle and BaBar have results for both $B^+ \to K^+ \ell \ell$ and $B^0 \to K^0 \ell \ell$.

- For R_{K^+} , LHCb result shows negative deviation, while Belle result is above unity (though statistically limited).
- Belle [JHEP 03 (2021) 105] result of R_{K^+} for bin of interest [1.0, 6.0] GeV $^2/c^4$ agrees with LHCb [arXiv:2103.11769] by 1.6 σ .

R_{K^+} Projection for Belle II

• Belle result of R_{K^+} is projected to Belle II.

$$q^2 \in$$
 [0.1 , 4.0], [4.0 , 8.12], [1.0 , 6.0], [10.2, 12.8], $>$ 14.18, and $>$ 0.1 GeV $^2/c^4$ from Belle. $q^2 \in$ [1.1 , 6.0] GeV $^2/c^4$ from LHCb (9 fb $^{-1}$)

- Statistical sensitivity of Belle II will be < 2% for whole q^2 region and it will be 2.5-3.5% for different q^2 bins.
- For $q^2 \in [1.0, 6.0] \text{ GeV}^2/c^4$ bin, considering same central value of Belle, the R_{K^+} of Belle II will deviate from LHCb [PRL 122, 191801 (2019)] by $> 10\sigma$.

$B^+ \to K^+ \ell^+ \ell^-$ measurement at Belle II

- Preliminary measurement at Belle II on $b \to s\ell\ell$.
- $B^+ o J/\psi(\ell\ell)K^+$ and $B^+ o \psi(2S)(\ell\ell)K^+$ decays are rejected with di-lepton invariant mass vetoes.
- FastBDT (event shape, vertex quality, and kinematic variables) is used to suppress background from light quark and inclusive B decays.
- ullet 2D fit in $M_{
 m bc}$ and ΔE to extract the signal yield.

$$M_{
m bc} = \sqrt{E_{beam}^2/c^4 - |p_B|^2/c^4} \ \Delta E = E_B - E_{beam}$$

- $8.6^{+4.3}_{-3.9} \pm 0.4$ signal events (2.7 σ significance) with just 62.8 fb⁻¹ of data sample (summer 2020).
- Available data was not enough to determine key observable like BR, RK, AI, etc..
- Updated $B \to K\ell\ell$ and $B \to K^*\ell\ell$ analyses are in progress.

$B \to X_s \ell \ell$ and R_{X_s} at Belle II

- Belle II can perform LFU test by measuring R_{X_s} in inclusive $B \to X_s \ell \ell$.
- $B \to X_s \ell \ell$ mode is the sum-of exclusive modes.
- Hadronic system X_s can be reconstructed from $Kn\pi$ final state, with $n \leqslant 4$, allowing for at most one neutral pion. Three-kaon modes can also be included.
- \bullet Belle [PRD 93 (2016) 032008] measurements are based on $M_{\rm X_s} < 2.0$ GeV to reduce combinatorial background.
- M_{X_s} constraint can be loosen to better understand the X_s spectrum.
- Belle II detector has certainly a good resolution to the e^+e^- mode and the R_{X_s} measurement is promising.

[PTEP 12, 123C01 (2019)]

Observables	Belle (0.71 ${\sf ab}^{-1}$)	Belle II (5 ab^{-1})	Belle II (50 ab^{-1})
R_{X_s} ([1.0, 6.0] GeV ² / c^4)	32%	12%	4.0%
R_{X_s} ([> 14.4] GeV ² / c^4)	28%	11%	3.4%

- R_{X_s} performance will be similar to R_{K^*} measurement.
- Reduction in systematic due to large data sample is crucial for precise measurement.

- P'_i is free from form-factor uncertainty.
- Non-zero $Q_i = P_i^{\mu} P_i^e$ [JHEP 05 (2013) 137] would suggest NP.
- Results on P'
 - LHCb P'₅: K* μμ
 - 2.5σ in $q^2 \in (4.0, 6.0) \text{ GeV}^2/c^4$
 - 2.9σ in $q^2 \in (6.0, 8.0) \text{ GeV}^2/c^4$
 - Belle P₅: K*ℓℓ

Seema Choudhury

• 2.6σ in $q^2 \in (4.0, 8.0) \text{ GeV}^2/c^4$, $\ell = \mu$

[1 12, 125001 (2019)]				
Observables	Belle (0.71 ${\sf ab}^{-1}$)	Belle II (5 ab^{-1})	Belle II (50 ab^{-1})	
P_5' ([1.0, 2.5] GeV^2/c^4)	0.47	0.17	0.054	
P_5' ([2.5, 4.0] GeV ² / c^4)	0.42	0.15	0.049	
P_5' ([4.0, 6.0] GeV ² / c^4)	0.34	0.12	0.040	
P_5' (>14.2 GeV ² / c^4)	0.23	0.088	0.027	

• Angular analysis for $B \to K^*ee$ mode in addition to $B \to K^*\mu\mu$ at Belle II.

Summary

- Flavor physics in e^+ - e^- collisions offers an extremely rich physics program with many opportunities to probe New Physics.
- Access to charged and neutral B with equal efficiency.
- Equal sensitivity for muon and electron channels.
- Access to inclusive decay modes in addition to exclusive modes.
- LHCb will have much higher cross-section compared to Belle II i.e., more $B\bar{B}$ pairs, and will lead the precision on the $R_{K^{(*)}}$ measurements. With the full dataset, Belle II will have comparable precision w.r.t LHCb final measurements.
- Long way to go.... a beginning has been made!

An exciting era of discoveries and precision measurements !!!

808.10567 Observables Expected the, accu-Expected Facility (2025) racy exp. uncertainty UT angles & sides φ₁ [°] φ₂ [°] φ₃ [°] *** 0.4 Belle II ** 1.0 Belle II *** 1.0 LHCb/Belle II $|V_{cb}|$ incl. 1% Relle II $|V_{ch}|$ excl. *** 1.5% Belle II $|V_{ub}|$ incl. ** 3% Belle II $|V_{ub}|$ excl. 2% Belle II/LHCb CP Violation $S(B \rightarrow \phi K^0)$ *** 0.02 Belle II $S(B \rightarrow \eta' K^0)$ *** 0.01 Belle II $A(B \to K^0 \pi^0)[10^{-2}]$ *** Belle II $A(B \to K^{+}\pi^{-})$ [10⁻²] *** 0.20 LHCb/Belle II (Semi-)leptonic $B(B \to \tau \nu) [10^{-6}]$ ** 3% Belle II $\mathcal{B}(B \to \mu\nu)$ [10⁻⁶] 7% Belle II $R(B \to D\tau\nu)$ *** 3% Belle II $R(B \rightarrow D^* \tau \nu)$ *** 2% Belle II/LHCb Radiative & EW Penguins ** 4% $\mathcal{B}(B \to X_s \gamma)$ Belle II $A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10⁻²] *** 0.005 Belle II $S(B \to K_S^0 \pi^0 \gamma)$ *** 0.03 Belle II $S(B \to \rho \gamma)$ 0.07 Belle II $\mathcal{B}(B_s \to \gamma \gamma)$ [10⁻⁶] 0.3 Belle II $\mathcal{B}(B \to K^* \nu \overline{\nu})$ [10⁻⁶] *** Belle II $\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$ *** 20% Belle II $R(B \to K^*\ell\ell)$ *** 0.03Belle II/LHCb Charm $\mathcal{B}(D_s \to \mu\nu)$ *** 0.9% Belle II *** $\mathcal{B}(D_s \to \tau \nu)$ 2% Belle II $A_{CP}(D^0 \to K_c^0 \pi^0)$ [10⁻²] 0.03 Belle II $|q/p|(D^0 \to K_S^0 \pi^+ \pi^-)$ 0.03 Belle II $\phi(D^0 \to K_S^0 \pi^+ \pi^-)$ *** Relle II Tau $\tau \rightarrow \mu \gamma \left[10^{-10}\right]$ *** < 50 Belle II $\tau \rightarrow e \gamma \left[10^{-10}\right]$ *** < 100Belle II $\tau \rightarrow \mu \mu \mu \ [10^{-10}]$ *** < 3 Belle II/LHCb

Precision CKM Unitarity Triangle

CP Violation in $b \rightarrow s$ penguin decays

(Semi-)leptonic B decays

Radiative & EW Penguins

Charm

Lepton flavor violating τ decays
+ Dark sector & much more

Systematics for R_K

• Systematic table for R_K at Belle.

Sources	Value (%)
Lepton identification	0.97
signal MC efficiency	0.25
Background suppression	0.4
PDF shape parameters	0.1 - 0.3

- Systematics like lepton identification, signal MC efficiency, and systematic due to cut on background suppression variable will decrease with the increase in data sample.
- PDF shape systematic depends upon the modeling.
- ullet R_K or R_{K^*} systematic will be very small for Belle II and the results will be dominated by statistical uncertainty.

$B \to K^* \ell \ell$ angular analysis

The differential decay rate is given by:

$$\frac{1}{d\Gamma/dq^2} \, \frac{d^4\Gamma}{d\cos\theta_\ell \, d\cos\theta_K \, d\phi \, dq^2} = \\ \frac{9}{32\pi} \big[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + \\ S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + \\ S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi_\big]$$

• In the lepton massless limit there are eight independent observables:

 F_L : Fraction of the longitudional polarization of the K^* S_6 : The forward-backward asymmetry of the dimuon system

- $S_{3,4,5,7,8,9}$: The remaining CP-averaged observables F_L and S_i are function of q^2 .
- Observable P'_i and Q_i

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

$$Q_i = P_i^{\mu} - P_i^{e}, i = 4,5$$

 Any deviation from zero for Q_i, would be a hint for NP.

Run Plan

- ullet 2021 July 5. Total data collected > 213 fb $^{-1}$
- 2021 summer shutdown
- 2021 Autumn run
 - $\Upsilon(4S)$: $\sim 400 \text{ fb}^{-1}$ (BaBar equivalent)
 - 10.75 GeV+scan for 10 fb⁻¹ is planned.
- 2022 summer \sim 700 fb⁻¹ (Belle equivalent)
- 2022 Long shutdown (LS1)
 - Full pixel in the 2nd inner most layer.
 - TOP PMT replacement
- 2026: $\sim 15 \text{ ab}^{-1}$
- 2031: $\sim 50 \text{ ab}^{-1}$

