

Charmonium-like studies at Belle II

Rashmi Dhamija

IIT Hyderabad

(On behalf of the Belle II Collaboration)

July 29, 2021

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

Outline of the talk:

- **Introduction to quarkonium and the exotics**
- **Overview of the Belle II experiment**
- □ X(3872) rediscovery at Belle II
- □ ISR preliminary results at Belle II
- Summary

Introduction:

- Quarkonium: $q\overline{q}$ meson with a heavy quark (i.e. q = c or b).
- Is a best playground for constituent quark model.
 - Simple two body system.
 - Large mass
 - Non-relativistic, perturbative.
- Also a good playground for exotics
 - Quark model predictions are robust.
- Exotics?
 - Tetraquarks, molecular states, hybrids, glueballs..

Charmonium-like above threshold:

[Rev. Mod. Phys. 90 (2018) 15003]

Observed States: Conventional Charmonium Unconventional neutral states Unconventional charged states Pentaquark candidates

Expected States

Kinematic threshold

- Below threshold: Mostly mesons/baryons bound states.
- Above threshold: Zoo of more complex states so called XYZ states which have not yet been understood.

Belle II Indian Institute of Technology Hyderabad Initial-state radiation **B** meson decay et 2W Double charmonium Two photon production e+ vmw YNNN

Charmonium Production at B-factories:

- B decay (B $\rightarrow KX_{cc}$) $\circ J^{PC} = 0^{-+}, 1^{--}, 1^{++}$
- Initial-state Radiation (ISR) \circ J^{PC} = 1⁻⁻
- Two-photon Process \circ J^{PC} = = 0⁻⁺, 0⁺⁺, 2⁺⁺, 2⁻⁺
- Double charmonium
 e.g. e⁺e⁻→J/ψX [PRL 98, 082001 (2007)]

The B-factories Legacy:

- B-factories already provided excited results such as CKM matrix elements, CPV in B Decays and so on.
- It has also made rich contribution to quarkonium spectroscopy.
- First exotic state X(3872) observed at Belle in 2003.

SuperKEKB & Belle II:

- SuperKEKB: Asymmetric e^{-} (7 GeV) e^{+} (4GeV) collider at KEKB, Japan. $\sqrt{s} = 10.58 \text{ GeV} = m(\Upsilon(4S)).$
- SuperKEKB goal: >30 x KEKB luminosity.
- Belle II is placed at an interaction point of SuperKEKB.

- Increasing by: 1-1.5 fb⁻¹ per day.
- Luminosity record: 3.1 x 10³⁴ cm⁻²s⁻¹.
- Belle II goal: 50 ab⁻¹ (~50x Belle data).

<u>X(3872):</u>

- First discovered at Belle in 2003 in $B \rightarrow K(J/\psi \pi^+ \pi^-)$ \circ 14.4±4.6 events (4.6 σ) PRL 91, 262001 (2003)
- Upper limit from Belle: Γ < 1.2 MeV.
 Measured BW width from LHCb: Γ = 1.19 ± 0.19 MeV.
- It has been widely studied in various decay modes.

Productions in	$B \rightarrow KX, p\overline{p}, pp, e^+e^- \rightarrow \gamma X$
Well established decay modes	$J/\psi\pi^{+}\pi^{-}$, $J/\psi\pi^{+}\pi^{-}\pi^{0}$, $J/\psi\gamma$, $\psi(2S)\gamma$, DDπ, DDγ, $\pi^{0}\chi_{c1}$

- Yet the complete nature of this state is unknown.
 - Tetraquark/Molecule..?
 - Needs more experimental results to clarify its nature.

Search for X(3872) at Belle II:

- Data Sample: 62.8 fb⁻¹.
- Reconstruction of final states: $B^{\pm} \rightarrow \pi^{+} \pi^{-} J/\psi(|^{+}|^{-})K^{\pm}$ $B^{0} \rightarrow \pi^{+} \pi^{-} J/\psi(|^{+}|^{-})K_{s}$

- Standard Selection criteria:
 - Particle identification.
 - Continuum suppression.
 - Kinematics criteria: $M_{\pi^+\pi^-}$, $M_{bc} \& |\Delta E|$.

$$M_{bc} = \sqrt{(E^{*2}_{beam} - p^{*2}_{B})}$$
$$|\Delta E| = E^{*}_{B} - E^{*}_{beam}$$

Rediscovery at Belle II:

- Calibration: $B \rightarrow \psi(2S)K$.
- First X(3872) at Belle II:
 - 14.4±4.6 events (4.6σ)
 Consistent with belle.

[BELLE2-NOTE-PL-2021-002]

 $(B^0 \rightarrow X(3872)K^0)/(B^+ \rightarrow X(3872)K^+) = 0.5[assumed]$ Belle, PRD 84, 052004 (2011)

Belle II Potential: XYZ

- Full width measurement at Belle II with $B \rightarrow KX(3872)$: $X(3872) \rightarrow DD\pi$!
- Due to low Q-value, the mass resolution is extremely good
 →expected improvement on width with 50 ab⁻¹

mode	Q value [MeV]	
J/ψπ⁺π⁻	495.65±0.17	
D⁰D⁰π⁰	7.05±0.18	
D⁰D⁰*	0.01±0.18	

• Search for other exotics such as $Z_c(3900)$ at DD* threshold (better slow pion reconstruction efficiency at Belle II > 60%).

Projection with 50 ab⁻¹
 (extrapolated from belle):

State	Production and Decay	N
X(3872)	B → KX(3872), X(3872) → J/Ψπ+π-	~14400
Y(4230)	ISR, Y(4230) \rightarrow J/ $\Psi\pi$ + π -	~29600
Z(4430)	$B \rightarrow K \pm Z(4430), Z(4430) \rightarrow J/\Psi \pi \pm$	~10200

Belle II TDR: arXiv1011.0352

Indian Institute of Technology Hyderabad

Charmonium (-like) ISR studies at B-factories

- At Belle, many exotic states have been observed in ISR processes, including Y(4260), Y(4630/4660), etc.
- The process e⁺e⁻ →π⁺π⁻J/ψ via ISR at C.M. energies upto 5 GeV was first studied by BaBar, where, an unexpected structure at about 4.26 GeV was observed clearly.
 Which is referred to as Y(4260) state.
 - Subsequently, confirmed by Belle & BESIII in the same process.
- Besides Y(4260), Belle & BESIII also observed a broad excess near 4 GeV, called Y(4008).
- However, the nature of the events at around 4 GeV/c² is still ambiguous.
- Therefore, it is necessary to identify the existences of Y(4008) and Y(4320) in $e^+e^- \rightarrow \pi^+\pi^-J/\psi$ at Belle II with a large number of data samples.

ISR Preliminary results at Belle II

- Reconstruction: $e^+e^- \Upsilon_{ISR} \rightarrow \pi^+\pi^- J/\psi(I^+I^-)$ final states
 - Nominal PID requirements. Ο
 - $|M(J/\psi) m_{J/\psi}| < 75 \text{ MeV/c}^2.$ $|M^2_{recoil}(\pi^+\pi^-J/\psi)| < 2 \text{ GeV/c}^2.$ Ο
 - 0
- Clear observation of ISR $\psi(2S)$ signals.
- Next step: Y(4260) rediscovery. Expect ~60 total events per 100 fb⁻¹.

Belle II Potential: ISR

- ISR is a useful tool to study $J^{PC}=1^{-}$ states below the center-of-mass energy.
- Fine structures can be investigated with ISR.
- Line shape of the Y(4260).
- Search for strange partner of $Z_c(3900)^{\pm}$ called the, Z_{cs} in KKJ/ ψ .
- Cross-sections of exclusive $c\overline{c}$ + hadrons.

Belle II TDR: arXiv1011.0352

• ISR analysis process is a unique case at e⁺- e⁻ machines.

Summary:

• Current Recorded Luminosity: ~ 213 fb⁻¹.

- Quarkonium/XYZ is the one of the main component of the physics program.
- With the significant increase of statistics compared to Belle, Belle II can measure
 - more precisely the line shapes of the states,
 - determine their spin-parities,
 - search for new decay channels.
- Statistics soon compared to BaBar/Belle.

Stay Tuned!

Thank You!

Back Up

Quarkonium Summary:

- Quarkonium: $q\overline{q}$: the simplest system of hadron
- Good agreement below open flavor threshold.
- Exotic candidates, so called XYZ states discovered.

Possible types of Exotic states?

Molecule

Tetraquark

Pentaquark

The exotic color-neutral combinations allowed in SM - proposed by Gell-Mann and Zweig, includes tetra-quarks (qqqqq), penta-quarks (qqqqq), glue-balls (gg), and so on.

[Nature Reviews Physics 1, 480 (2019)

<u>[Ann. Rev.</u> <u>Nucl. Part. Sci.</u> <u>68 (2018) 17]</u>