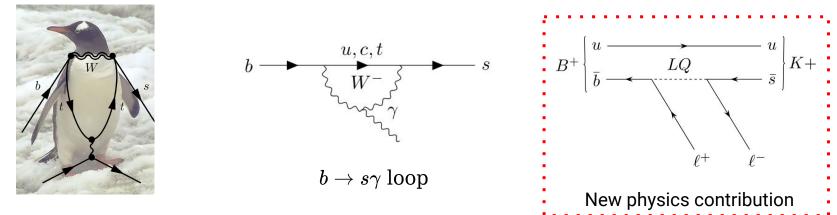
Electroweak penguin measurements and prospects at Belle II

Rahul Tiwary On behalf of the Belle II Collaboration

(tifr

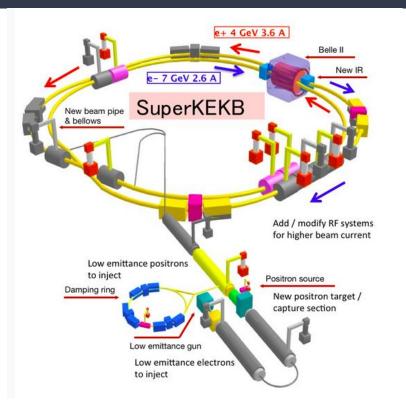
28th International Workshop on Weak Interactions and Neutrinos 2021

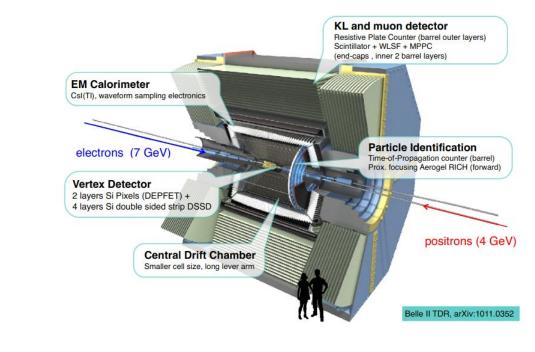
2021


Belle T

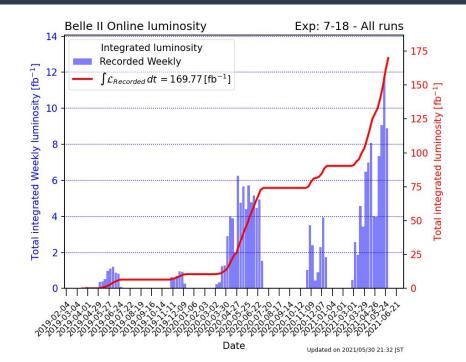
Outline

- Motivation
- Belle II status
- Electroweak B decays
- Radiative *B* decays
- Summary


Motivation


- FCNC transition $b \to s(d)$ is forbidden at tree level in the Standard Model and proceeds via electroweak loop diagrams.
- New physics effects can contribute in the loop or mediate the process at tree level.

Electroweak penguin


Belle II and SuperKEKB

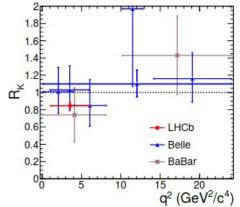
Belle II status

- Reached a record peak luminosity of $2.9 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Luminosity goal: $6.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Collected $\approx 170 \text{ fb}^{-1}$ data since 2018, ultimate goal to collect 50 ab^{-1}

Electroweak B decays (semi-leptonic)

Observables

$$R_{H}[q_{0}^{2},q_{1}^{2}] = rac{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} rac{d\Gamma(B
ightarrow H\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} rac{d\Gamma(B
ightarrow He^{+}e^{-})}{dq^{2}}} ~~(\ell \Rightarrow e ~ {
m or} \, \mu)$$

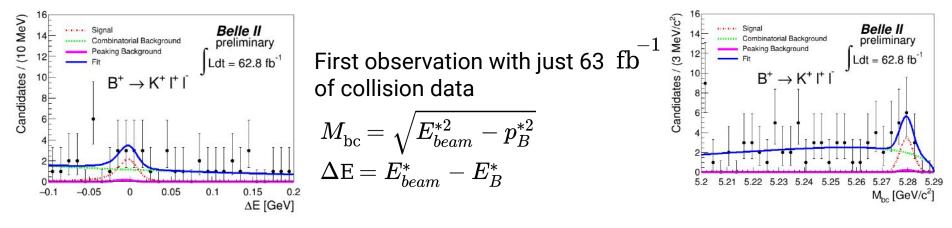

 $Q_i = P_i^\mu - P_i^e~~$ (def of P_i : <u>JHEP 05 (2013) 137</u>)

Overview

- SM gauge bosons don't discriminate between different leptons, similar couplings
- R_H is a clean observable
- Belle R_K measurement: <u>JHEP 03, 105 (2021)</u>,
- $B \rightarrow K^* \ell \ell$ angular analysis: <u>PRL 118, 111801</u>

Belle II vs hadron machines

- Equal sensitivity to electron and muon modes
- Access to high and low q^2 regions
- $B \rightarrow X\gamma$, $B \rightarrow X\ell\ell$ inclusive measurements



Electroweak B decays (semi-leptonic)

• First $b
ightarrow s\ell\ell$ decay observed at Belle II

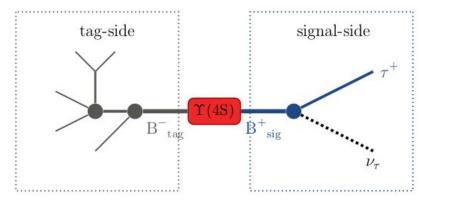
 2.7σ

- Reject $B^+ \to K^+ \psi(nS)$ [where n=1,2] background with di-lepton invariant mass veto
- Employed BDT (event shape, vertex related and missing energy variables) to suppress background from light quark and inclusive *B* decays.

• $8.6^{+4.3}_{-3.9}\pm0.4$ signal events (2.7 σ significance) [errors are stat. and syst. resp.] ⁷

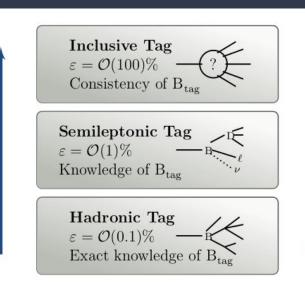
Observables

Branching fraction: $\mathcal{B}(B o K^{(*)}
u ar{
u})$ Longitudinal polarisation fraction (F_L) of K^* $F_L^{SM} = 0.47 \pm 0.03$

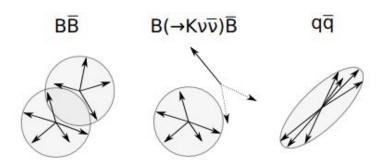

Overview

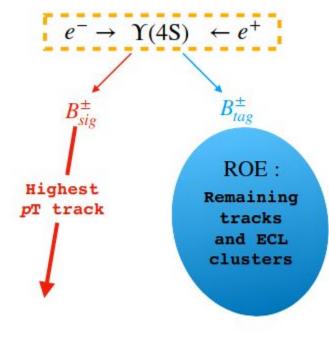
- Sensitive to BSM (<u>JHEP 04, 022 (2019)</u>)
- Portal to dark matter search (JHEP 03, 090 (2012))
- Belle (<u>PRD 87, 111103</u>) and BaBar (<u>PRD 82, 112002</u>) measurements provided UL on the BF

	UL @ 90% CL (10 ⁻⁵)	Ref
B+→K+ <i>vv</i>	1.6	<u>BaBar</u> , HAD+SL TAG, 429 fb ⁻¹
Β +→ Κ ∗+υυ	4.0	<u>Belle</u> , HAD TAG, 711 fb-1
Β∘→Κ∘υυ	2.6	Belle, SL TAG, 711 fb-1
Β∘→Κ∗∘υυ	1.8	Belle, SL TAG, 711 fb-1

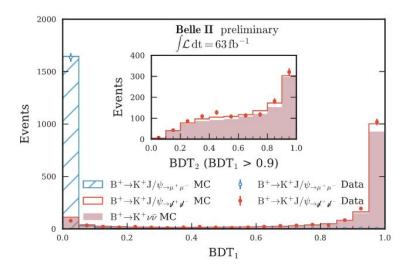

(1)

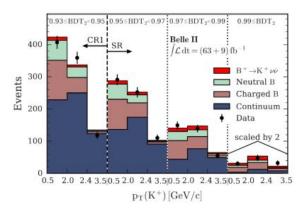
Efficiency


Tagging approach

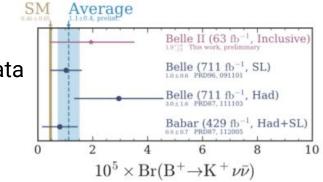

- Previous searches for $\mathcal{B}(B \to K \nu \bar{\nu})$ adopted a tagging technique where the tag-side *B* meson was explicitly reconstructed
- Hadronic tag: $\epsilon(tag) \times \epsilon(sig) \approx 0.04\%$ Semi-leptonic tag: $\epsilon(tag) \times \epsilon(sig) \approx 0.2\%$

Purity p


- Reconstruct the track with highest p_T and at least one hit in the PXD as the signal candidate.
- Inclusive reconstruction of remaining tracks as cluster as rest of event (ROE)
- Identification of signal using topological features of decay


Inclusive tagging approach

- First results for $\mathcal{B}(B \to K \nu \bar{\nu})$ at Belle II employing inclusive tag approach
- Use of nested statistical-learning discriminators exploiting the event topology
- Sizeable signal selection efficiency (4%) while controlling large backgrounds.


- Validation using $B o KJ/\psi [o \mu^+ \mu^-]$
- Ignore $\mu^+\mu^-$ and modify K^+ 4-momentum using generator level info of K^+ from $B \to K^+ \nu \bar{\nu}$
- Validation channel now mimics signal!
- Excellent Data/MC agreement between the BDTs of signal and control channel

- Signal strength: $\mu = 4.2^{+2.9+1.8}_{-2.9-1.6}$ [errors are stat. and syst. resp.]
- Consistent with the bkg-only (SM) hypothesis at CL $1.3\sigma~(1\sigma)$
- Observed (expected) UL @90% CL: $4.1 imes 10^{-5} (2.6 imes 10^{-5})$

Sensitivity with just 63 fb data is already close to previous searches with significantly larger data-set.

Submitted to journal

arXiv:2105.05754

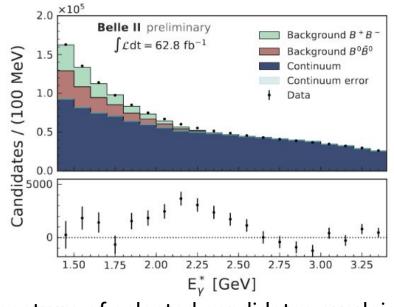
 ${\cal B}(B o K^+
u ar{
u}) = 1.9^{+1.3+0.8}_{-1.3-0.7} imes 10^{-5}$

Prospects for Belle II

- Expected to observe $B o K^*
 u ar{
 u}$ with 5 ${}_{
 m ab}{}^{-1}$ collision data
- Sensitivity on branching fraction will be about 10% with 50 ab_1^{-1} data
- Possible to determine F_L with a sensitivity of 0.08 with 50 ab^{-1} data
- Work in progress to improve the inclusive tag method and employ the same strategy for other modes like $B o K^*
 u ar
 u$

Radiative electroweak *B* decays

Observables

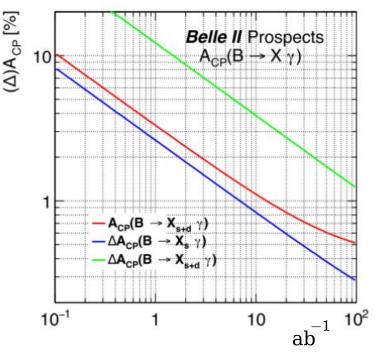

$$\begin{array}{ll} \text{Branching fraction:} & \mathcal{B}(B \to X_s \gamma) \text{, } \mathcal{B}(B \to X_{s+d} \gamma) \\ A_{\text{CP}}^{X_{s+d}\gamma} &= \frac{\Gamma(\bar{B} \to X_{s+d}\gamma) - \Gamma(B \to \bar{X}_{s+d}\gamma)}{\Gamma(\bar{B} \to X_{s+d}\gamma) + \Gamma(B \to \bar{X}_{s+d}\gamma)} \text{, } & \Delta A_{\text{CP}} = A_{\text{CP}}(B^+ \to X_s^+ \gamma) - A_{\text{CP}}(B^0 \to X_s^0 \gamma) \end{array}$$

Overview

- Belle measurement of $A_{\rm CP}$ and $\Delta A_{\rm CP}$ for $B \to X_s \gamma$: <u>PRD 99, 032012</u> $A_{\rm CP}$ measurement for $B \to X_{s+d} \gamma$ with lepton tag: <u>PRL 114, 151601</u>

Radiative electroweak *B* decays

- Presence of monochromatic (smeared) photon from $b
 ightarrow s \gamma$ two-body decay.
- Select high energy photon $E_{\gamma}^* > 1.4$ GeV
- Photon should not be arising from π^0 decay
- BDT based continuum suppression • with event shape variables
- Data driven scaling of MC (off-resonance and side-bands)



Spectrum of selected candidates overlaid with various background contributions.

Radiative electroweak *B* decays

Prospects for Belle II

- Fully inclusive measurements: reduce systematics by better modeling of neutral hadrons faking photons
- Sum-of-exclusive measurements: increase the number of modes to reduce systematic from X_s hadronization
- Hadronic tagging method to increase purity and reduce E_{γ} threshold

Summary

- Clean environment at Belle II grants access to unique observables (R_{X_s}, Q_5) in rare B decays
- Improved detector and analysis methods, better sensitivity.
- Opportunity to probe neutral as well as charged final states.
- Belle II is collecting data despite the Covid-19 pandemic thanks to our collaboration, inching towards the ultimate goal to record 50 ab collision data.

