Latest results from Belle and Belle II

IBS, Center for Theoretical Physics of the Universe

PASCOS 2021

26th International Symposium on Particles, Strings & Cosmology

June 14-18, 2021

Ethos of the PASCOS series

1st-generation flavor factory experiments

- Shall present a selected sample of results obtained with the full data sample, unless stated otherwise
- For the complete list, refer to: <u>https://belle.kek.jp/bdocs/b_journal.html</u>

Belle stopped taking data more than 10 yr ago, though physics harvesting continues unabated

~ 550 fb⁻¹ On resonance: $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ Off resonance: ~ 54 fb⁻¹ Has published 2 PRL,
 4 JHEP and 15 PRD
 papers since last yr

Plan to deliver collisions at a peak luminosity of 6.5×10³⁵ cm⁻²s⁻¹ (30 times that of KEKB) by increasing beam current 1.5 times and reducing beam size by 20 times
 Reached already 2.96×10³⁴ cm⁻²s⁻¹
 KEKB
 May 17, 2021)

Search for new CPV source in B^0 \rightarrow K_S^0 K_S^0 K_S^0

Potential NP contributions in the b → s loop can affect the time-dependent decay rate

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} (1 + q[S\sin(\Delta m_d \Delta t) + A\cos(\Delta m_d \Delta t)])$$

☐ Mixing-induced CPV term *S* will then differ from that measured in b → cc̄s transitions ($\equiv -\sin 2\phi_1$), which acts as an SM candle

 $\hfill\square$ Direct CP violation term $\mathcal A$ can also deviate from its SM value of zero

□ Consistent with the WA of −sin 2φ₁ (−0.70) as well as with its inferred value
 □ Significantly more precise than the previous Belle result PRL 98, 031802 (2007) and consistent with BaBar PRD 85, 054023 (2012)

Earlier there was a 1.6σ discrepancy between the two experiments

Story of another $b \rightarrow s\bar{s}s$ mediated decay

Consistent with theory prediction that lies in the range $(1.3-4.3)\times10^{-6}$

PRD 69, 114020 (2004) PRD 70, 054006 (2004)

Moving to CP violation in charm decays

- CP violation in the charm sector is expected to be $\mathcal{O}(10^{-3})$ or smaller PRD 86, 036012 (2012)
- Largest effect in singly Cabibbo-suppressed (SCS) decays, thanks to the contribution from penguin diagrams
- As Cabibbo-favored (CF) decays proceed via tree-level amplitudes, nonzero CPV asymmetry in these decays would be a smoking gun signal for NP

Measured BF and CP asymmetry in the SCS decays D⁺_s → K⁺(π⁰, η) as well as in the CF decay D⁺_s → π⁺η
 We reconstruct D⁺_s either directly (untagged) or in the decay D^{*+}_s → D⁺_sγ (tagged)
 D⁺_s → φπ⁺ is the reference channel

$$\begin{aligned} A_{CP}(D_s^+ \to K^+ \pi^0) &= 0.064 \pm 0.044 \pm 0.011 \\ A_{CP}(D_s^+ \to K^+ \eta) &= 0.021 \pm 0.021 \pm 0.004 \\ A_{CP}(D_s^+ \to \pi^+ \eta) &= 0.002 \pm 0.003 \pm 0.003 \end{aligned}$$

- Most precise results, significantly improve over current WA values showing no hint for CP violation
- These BF and A_{CP} values can be used in sum rules to provide stringent predictions for CPV in charm
 PRL 115, 251802 (2015)

- □ Significant difference ($\Delta A_{CP} = 0.124 \pm 0.021$) between the direct CP asymmetry in B⁰ → K⁺π⁻ and B⁺ → K⁺π⁰ decays
- □ As these decays suffer from large hadronic uncertainties, an isospin sum rule has been proposed in order to clear the air

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = 0$$

- Constitutes a null test of SM in the limit of isospin symmetry and in absence of electroweak penguin contributions to B → Kπ decays
 A violation of the sum rule would be evidence for NP
- $\square \text{ Derformed many months of } \mathcal{P} \text{ and } \Lambda = \text{of } \mathbb{P}^+ \times \mathbb{K}^+ \pi^0 \text{ and } \mathbb{P}^+ \times \mathbb{K}^+$

□ Performed measurements of \mathcal{B} and A_{CP} of B⁺ → K⁺π⁰ and B⁺ → π⁺π⁰

 $\mathcal{B}(B^+ \to K^+ \pi^0) = [11.9^{+1.1}_{-1.0}(\text{stat}) \pm 1.6(\text{syst})] \times 10^{-6}$ $\mathcal{B}(B^+ \to \pi^+ \pi^0) = [5.5^{+1.0}_{-0.9}(\text{stat}) \pm 0.7(\text{syst})] \times 10^{-6}$

arXiv:2105.04111

 Consistent with previous results
 & show detector performance to be comparable with early Belle

 $\mathcal{A}_{CP}(B^+ \to K^+ \pi^0) = -0.09 \pm 0.09 \text{(stat)} \pm 0.03 \text{(syst)}$ $\mathcal{A}_{CP}(B^+ \to \pi^+ \pi^0) = -0.04 \pm 0.17 \text{(stat)} \pm 0.06 \text{(syst)}$

The most challenging one: $B^0 \rightarrow K_S^0 \pi^0$

12

10

-0.3

-0.3

12

10

- Precision on $A_{K^0\pi^0}$ is the nost limiting input for esting the sum rule Experimental challenges: $\rightarrow \pi^0$ final state \Rightarrow tail in Precision on $A_{K^0\pi^0}$ is the most limiting input for testing the sum rule
- **Experimental challenges:**
 - ΔE distributions
 - CP eigenstate \Rightarrow need \geq flavor tagging
 - Candidates per 30 MeV K_{S}^{0} flies before decay \succ \Rightarrow has own challenge for time-dependent CP violation study
- Found ~ 50 $B^0 \rightarrow K_s^0 \pi^0$ candidates and measured:

 $\mathcal{B}(B^0 \to K^0 \pi^0) = [8.5^{+1.7}_{-1.6}(\text{stat}) \pm 1.2(\text{syst})] \times 10^{-6}$ $\mathcal{A}_{K^{0}\pi^{0}} = -0.40^{+0.46}_{-0.44}(\text{stat}) \pm 0.04(\text{syst})$

- π^0 reconstruction efficiency is dominant systematic source for branching fraction
- Need to substantially improve the $A_{K^0\pi^0}$ precision as we accumulate more data
- Time-dependent CP study is underway

Sum rule test: present and future

□ Expect Belle II to be a crucial player in resolving the Kπ puzzle □ Direct CP asymmetry in the $B^0 \rightarrow K_S^0 \pi^0$ channel will be the key

Belle II (Preliminary)

Nature's hint or teasing?

At present we are faced with a number of flavor anomalies, mostly related to muons, that needed to be tested with more data and taken in a complementary setup

Measurement of R_K* at Belle

- Test the lepton-flavor universality (LFU) by measuring the ratio of $\mathcal{B}(B \to K^* \mu^+ \mu^-)$ and $\mathcal{B}(B \to K^* e^+ e^-)$, with K^{*+} reconstructed in the final states of $K^+ \pi^0$ and $K^0_S \pi^+$ and K^{*0}_S in $K^+\pi^-$ and $K^0_{S}\pi^0$
- The R_{K^*} ratio is theoretically robust as FF related uncertainties cancel
- Measured R_{K^*} in a number of q^2 bins including the one up to $19 \text{ GeV}^2/c^4$
- Similar performance for electron and muon mode (103 vs. 140 signal evt)
- $R_{K^{*+}}$ is measured for the first time

Results consistent with SM predictions with largest deviation found in the lowest q^2 bin, P where LHCb PRL 126, 161801 (2021) 2.0 2.0 reports an R_{K*0} value differing

from the SM expectation

JHEP 08 (2017) 055

13

Measurement of R_K at Belle

- Similar to R_{K^*} , tested LFU in the ratio $\mathcal{B}(B \to K\mu^+\mu^-)/\mathcal{B}(B \to Ke^+e^-)$ in a number of q^2 bins
- Also, measured CP-averaged isospin asymmetries (A_I) in the electron and muon mode
- $M_{\rm bc}$ projections of a multidim. fit for \succ B⁺ case are shown in right two plots

- R_{κ} values for various q^2 bins agree with SM
- Our result for the bin of interest (red marker in lower left) is higher than LHCb by 1.6σ
 - A_I results are P consistent with null asymmetry with the largest difference of 2σ found in q^2 bin: $[1,6] \text{ GeV}^2/c^4$

What does future hold for LFU test?

PTEP 2019 (2019) 12, 123C01			Using more data, we can reduce	
Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	$\begin{bmatrix} & \text{Belle II} \\ 50 \text{ ab}^{-1} \end{bmatrix}$	both stat and syst uncertainties
$\overline{R_K ([1.0, 6.0] \mathrm{GeV}^2)}$	28%	11%	3.6%	Belle II offers a complementary
$R_K (> 14.4 {\rm GeV}^2)$	30%	12%	3.6%	setup with respect to LHCb
R_{K^*} ([1.0, 6.0] GeV ²) 26%	10%	3.2%	Similar performance for muon
$R_{K^*} (> 14.4 \mathrm{GeV^2})$	24%	9.2%	2.8%	
R_{X_s} ([1.0, 6.0] GeV ²)	32%	12%	4.0%	and electron channels
R_{X_s} (>14.4 GeV ²)	28%	11%	3.4%	> Upper hand in inclusive modes

While we have a long way to go, a beginning has been made with the rediscovery of one related channel

- both stat and syst uncertainties Belle II offers a complementary setup with respect to LHCb Similar performance for muon \succ and electron channels
 - Upper hand in inclusive modes

Search for $B^+ \to K^+ \nu \bar{\nu}$ decays

 This suppressed FCNC decay offers a complementary probe of NP scenarios proposed to explain flavor anomalies

PRD 98, 055003 (2018); 102, 015023 (2020); 101, 095006 (2020)

- □ It could help constrain models with leptoquarks, axions, or DM particles
- □ Experimentally very challenging with two (escaping) neutrinos \Rightarrow information of the other B meson in the process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ is required
- Deployed a novel inclusive tagging method
 - Substantially larger signal efficiency of ~ 4% compared to << 1% of the earlier approaches at the cost of higher background levels</p>
- Two boosted decision tree classifiers, of which the 2nd one is nested, to fight against various backgrounds
 arXiv:2104.12624 (submitted to PRL)

Lepton flavor violation in tau decays

- □ Conducted a search for LFV decays $\tau^{\pm} \rightarrow \ell^{\pm} \gamma$ ($\ell = e, \mu$) using twice the data size used in the earlier Belle result PLB 666, 16 (2008) Signal side γ
- □ Significant improvement in search sensitivities
 - a) Introduced two new variables: energy asymmetry and $\xi_{\tau(tag),track(tag)}^{CM} \equiv \hat{p}_{\tau(tag)}^{CM} \cdot \hat{p}_{track(tag)}^{CM}$
 - b) Performed optimization for the tag-side events
 - c) Calibrated photon energy resolution using $\mu^+\mu^-(\gamma)$ events

Unbinned maximum-likelihood fit to:

arXiv:2103.012994 (submitted to JHEP)	$M_{\rm bc} = \sqrt{(4)}$ $\Delta E / \sqrt{s} = (4)$	$(\vec{p}_{beam}^{CM})^2 - (\vec{p}_{\ell\gamma}^{CM})^2$ $E_{\ell\gamma}^{CM} - \sqrt{s}/2)/\sqrt{s}$
Channel	$\tau ightarrow \mu \gamma$	$ au ightarrow { m e}\gamma$
Signal efficiency	3.7%	2.9 %
Exp. # bkgs.	5.8 ± 0.4	5.1 ± 0.4
Obs. event	5	5
$N_{ m sig}^{ m UL}$	2.8	3.0

Expected 90% confidence-level upper limits, $\mathcal{B}(\tau^{\pm} \rightarrow \mu^{\pm}\gamma) < 4.9 \times 10^{-8}$ and $\mathcal{B}(\tau^{\pm} \rightarrow e^{\pm}\gamma) < 6.4 \times 10^{-8}$, are 1.5–1.7 times more stringent than BaBar PRL 104, 021802 (2010)

Solution $\mathcal{B}(\tau^{\pm} \to \mu^{\pm}\gamma) < 4.2 \times 10^{-8}$ and $\mathcal{B}(\tau^{\pm} \to e^{\pm}\gamma) < 5.6 \times 10^{-8}$, of which the muon one is the most stringent to date

What about baryon number violation?

Tau is the only lepton that can decay to hadrons Can potentially give rise to baryon number violating decays $\tau \to p\ell\ell'$ [$\ell^{(\prime)} = e, \mu$]; such processes will be a signature for NP e.g., supersymmetry, GUT and models with black holes

	PI	<mark>PRD 102, 111101(R) (2020)</mark>					
	All channels	ϵ (%)	$N_{ m sig}^{ m UL}$	$\mathcal{B}(imes 10^{-8}$			
5	$\tau^- ightarrow \overline{p} e^+ e^-$	7.8	3.9	< 3.0			
	$\tau^- \to {\it pe}^- {\it e}^-$	8.0	4.1	< 3.0			
1	$\tau^- ightarrow \overline{p} e^+ \mu^-$	6.5	2.2	< 2.0			
	$\tau^- ightarrow \overline{p} e^- \mu^+$	6.9	2.1	< 1.8			
	$\tau^- \to \textit{p}\mu^-\mu^-$	4.6	3.1	< 4.0			
	$\tau^- \to \overline{p} \mu^- \mu^+$	5.0	1.5	< 1.8			

- Performed a search for $\tau \rightarrow p\ell\ell'$ decays
- No evidence for a signal is found
- Set 90% CL upper \geq limits, improving LHCb limits by an order of magnitude in two channels
- Brand new limits set for four other decay channels

What can Belle II do?

Should be able to push upper limits for LFV and BNV decays by two orders of magnitude, in some cases hitting the 10⁻¹⁰ mark

Probing the dark sector

A vector mediator of hypothetical U'(1) gauge interaction of the dark sector, *aka* dark photon, may interact with matter via various portals

20

Search for a pair of dark photons A', mediated by an off-shell dark Higgs boson h', in decays of B^0 mesons

These DM particles decay promptly each to a pair of leptons ($\ell = e, \mu$) or pions

PRD 83, 054005 (2011)

- No signal found in the A' mass range [0.01,2.62] GeV/c² ⇒ 90% CL upper limits set on the product branching fractions
- \blacktriangleright From these limits, calculate the Higgs portal coupling λ for each assumed A' or h' mass

Closing words

- Despite passing on the baton of frontier e⁺e⁻ flavor-factory experiments to Belle II, Belle continues to produce exciting physics results and will do so for few more years
- ❑ Agenda for the day has been on how to probe new physics beyond the SM at the intensity frontier → complementary to high-p_T programs of ATLAS and CMS at the LHC
- □ Belle II has already integrated 190 fb⁻¹ data → expect to record a data size similar to Belle by the long shutdown next year
- □ As for LHCb, there is healthy competition and complementarity between the two experiments... need more and more data

