

# STATUS OF BELLE II AND PROSPECTS

**FPCP 2021** 

### Minakshi Nayak (for the Belle II collaboration)

11<sup>th</sup> June, 2021



### Talk Outline (focusing only on quark-flavor topics)

- Experiment
  - SuperKEKB
  - Belle II
- Status
  - Luminosity and data taking
  - Detector performances
  - Most recent physics results

### • Prospects

- Luminosity projection
- Expected physics precisions
- Future prospects



















### Belle II detector

New detector (only the structure, the super conducting magnets, and the crystals of the calorimeter are re-utilized)



### Luminosity Status

- Achieved world record in June 2020 of instantaneous  $L = 2.9 \times 10^{34} cm^{-2} s^{-1}$
- Regular data-taking since April 2019
- Despite Covid-19, collected ~*180 fb*<sup>-1</sup> of data
- Belle: 1000 fb<sup>-1</sup>, BaBar: 514 fb<sup>-1</sup>
- Already provided performance and physics results with 35 fb<sup>-1</sup> and 63 fb<sup>-1</sup> of data
- New results with 150 fb<sup>-1</sup> coming soon



### Mid-high momentum tracking performances





- Data/MC tracking efficiency mismatch compatible with zero
- Fake rate/track is in sub-percent level

### Vertexing performances D<sup>o</sup> lifetime:

- $D^0$  identified using  $D^{*+} \rightarrow D^0 \pi^+$
- Estimated vertex resolution ~  $40 \ \mu m$
- Factor 2 improved t resolution @ Belle II (thanks to the pixel detector)
- $L_{\text{int}} \sim 9.6 \text{ fb}^{-1}$ :  $\tau(D^0) = (412.3 \pm 2.0) \text{ fs}$ , WA = (410.1±1.5) ps

### B<sup>0</sup> lifetime:

- Average distance between B vertices  $200\mu m \rightarrow 130 \ \mu m$
- Estimated resolutions
  - Time:  $\Delta t \sim 1 \text{ ps} \leftrightarrow \Delta t \sim 80 \ \mu m$
  - Dominated by "tag"-side
- $L_{\text{int}} \sim 8.7 \text{ fb}^{-1}$ :  $\tau(B^0) = (1.48 \pm 0.28_{\text{stat}} \pm 0.06_{\text{syst}}) \text{ ps}$ , WA = (1.519±0.004) ps

 $\tau^-$  lifetime:

- 2x better proper decay time resolution than Belle
- Expect competitive results soon with only ~150 fb<sup>-1</sup>







7

## Particle identification: leptons

### Using fully reconstructed events: $J/\psi \rightarrow ee$ , $\mu\mu$

- Important for precision measurements of leptonic and semileptonic physics processes
- Identification mostly driven by  $K_L^-\mu$  detector, EM calorimeter, dE/dx (central drift chamber, vertex detector)
- Similar reconstruction efficiency
- Extracted for various lepton-ID and angular acceptances

Average identification efficiency ~94% (e-), ~90% ( $\mu$ -), for a  $\pi$  mis-id rate of 2%(e-), 4% ( $\mu$ -).

 $\ell ext{ID} = rac{\mathcal{L}_\ell}{\mathcal{L}_e + \mathcal{L}_\mu + \mathcal{L}_\pi + \mathcal{L}_K + \mathcal{L}_n}$ 





### Particle identification: hadrons Using fully reconstructed event: $D^{*+} \rightarrow D^{0}[K^{-}\pi^{+}]\pi^{+}$



- Better K/ $\pi$  separation necessary for precision measurement of hadronic and semileptonic physics parameters
- Identification driven by PID detectors, dE/dx (central drift chamber, vertex detector)



•  $D^{*+} \rightarrow D^0 \pi_s^{+}, D^0 \rightarrow K^- \pi^+$ 

# Flavor tagging performance

- Crucial tool for time-dependent CP violation analyses
- Complex MVA algorithm that combines informations such as charge and momentum of e, μ, π, Κ, Λ not associated with signal and returns flavour (q).dilution factor (r)
- Measured effective flavour tagging efficiency of neutral B:  $\varepsilon_{eff} = 33.8 \pm 3.6(\text{stat}) \pm 1.6(\text{syst})\%$
- Belle: 30.1 ± 0.4 %
- Expectation:  $\varepsilon_{eff} \approx 37$  % based on MC.

$$\varepsilon_{\text{eff}} = \sum_{i} \varepsilon_{\text{eff},i} = \sum_{i} \varepsilon_{i} \cdot (1 - 2w_{i})^{2}$$

arXiv: 2008.02707 250 Belle II 2019 (preliminary) Data 200  $L dt = 8.7 \text{ fb}^{-1}$ Candidates per 0.04 -MC 150 100 50 Vormalized Residuals 0 0.2 -0.4 -0.2 0.4 -0.6 q · FBDT 10



# A few recent Belle II physics results

TDCPV  $(B \rightarrow J/\psi K_S^{0})$ 

• CPV in the interference between  $B \rightarrow J/\Psi K_s$  and  $B \rightarrow \overline{B}^0 \rightarrow J/\Psi K_s$  can be measured through the raw asymmetry

 $A_{CP} = A_{CP}^{raw} \cdot (1 - 2w) \otimes R(\Delta t) =$  $sin(\Delta m_d \Delta t) sin(2\phi_1) \cdot (1 - 2w) \otimes R(\Delta t)$ 





 <u>Measurement Ingredients</u>
 Raw asymmetry: A<sub>CP</sub><sup>raw</sup>
 Δt from the distance Δz between B<sub>CP</sub> and B<sub>tag</sub> ⇒ Δt~Δz/βγc
 Wrong tag fraction (w) using flavor

• mixing frequency:  $\Delta m_d$ 

tagger

### Belle II measurement of $\sin 2\Phi_1/\sin 2\beta$

- First time-dependent CP violation measurement at Belle II
- Decay mode:  $B^0 \rightarrow J/\psi K_s$  with  $J/\psi \rightarrow \mu\mu$ , ee



<sup>2.71</sup> $\sigma$  away from 0 (accounting for the stat uncertainty only)

First measurement of  $B^0 \rightarrow J/\psi K_L$  at Belle II

- An additional channel to provide measurement of  $\sin(2\Phi_{\scriptscriptstyle 1})$
- $\bullet \ \eta_{\rm CP}(K_{_L}) = \ \eta_{\rm CP}(K_{_S})$
- Signal yield of  $(7.3\pm0.4)/\text{fb}^{-1}$ , consistent with Belle
- Next: time-dependent analysis for CPV measurement



### First measurement of $B \rightarrow \eta' K_s$ at Belle II



Also covered by Radek Žlebčík



| 0 110011101           |                                                            |              |
|-----------------------|------------------------------------------------------------|--------------|
| $B^{\pm} \to \eta' K$ | $63.4 + 3.4 + 3.4 (stat) \pm 3.4 (syst)$                   | $70.4\pm2.5$ |
| $B^0 \to \eta' K^0$   | $59.9^{+5.8}_{-5.5}(\mathrm{stat}) \pm 2.7(\mathrm{syst})$ | $66 \pm 4$   |

• Hence TDCPV is expected to be sensitive to NP

BELLE2-CONF-PH-2021-007 arXiv:2104.06224

### Prospects for $\sin 2\Phi_1/\sin 2\beta$ measurements

#### PTEP 2019, 123C01

|                           | WA (2017)   |             | $5 \text{ ab}^{-1}$ |             | $50  ab^{-1}$ |             |
|---------------------------|-------------|-------------|---------------------|-------------|---------------|-------------|
| Channel                   | $\sigma(S)$ | $\sigma(A)$ | $\sigma(S)$         | $\sigma(A)$ | $\sigma(S)$   | $\sigma(A)$ |
| $\overline{J/\psi K^0}$   | 0.022       | 0.021       | 0.012               | 0.011       | 0.0052        | 0.0090      |
| $\phi K^0$                | 0.12        | 0.14        | 0.048               | 0.035       | 0.020         | 0.011       |
| $\eta' K^0$               | 0.06        | 0.04        | 0.032               | 0.020       | 0.015         | 0.008       |
| $\omega K_{\rm S}^0$      | 0.21        | 0.14        | 0.08                | 0.06        | 0.024         | 0.020       |
| $K^0_{\rm S}\pi^0\gamma$  | 0.20        | 0.12        | 0.10                | 0.07        | 0.031         | 0.021       |
| $K_{\rm S}^{ m 0}\pi^{0}$ | 0.17        | 0.10        | 0.09                | 0.06        | 0.028         | 0.018       |

# Belle II measurement towards $\Phi_2/\alpha$ Detail covered by Ching-Hua Li





$$B^+ \rightarrow \pi^+ \pi^0$$



Probes  $\pi^0$  reconstruction and PID.  $\mathscr{B}(B^+ \to \pi^+ \pi^0) = [5.5^{+1.0}_{-0.9}(\text{stat}) \pm 0.7(\text{syst})] \times 10^{-6}$  $A_{CP}(B^+ \to \pi^+ \pi^0) = -0.04 \pm 0.17(\text{stat}) \pm 0.06(\text{syst})$ 

arXiv:2105.04111

Belle II measurement towards  $\Phi_3/\gamma$ 

#### arXiv:2104.03628

- Measured via the interference between  $B^- \rightarrow D^0 K^-$  and  $B^- \rightarrow D^0 K^-$  with various  $D^0$  final states:
  - CP modes:  $K^-K^+$ ,  $\pi^-\pi^+$ ,  $K_s^{\ 0}\pi^0$
  - DCS modes:  $K^+\pi^-$ ,  $K^+\pi^-\pi^0$
  - Self-conjugate modes:  $K_{S}{}^{0}\pi^{-}\pi^{+},$   $K_{S}{}^{0}K^{-}K^{+},$   $K_{S}{}^{0}\pi^{-}\pi^{+}\pi^{0}$



•  $B^- \rightarrow D(K_s^0 \pi^+ \pi^-) K^-$  is the most sensitive channel to determine  $\Phi_3$ 

### Results of B $\rightarrow$ D<sup>(\*)</sup>h using 62.8 fb<sup>-1</sup> of Belle II data



### Semileptonic and leptonic B decays: Belle II Status

#### |Vcb| from $B \rightarrow D^* l\nu$ (untag)

- Signal extracted using  $\cos \theta_{BY}$  distribution
- $B(B^0 \rightarrow D^* l^+ \nu) = (4.60 \pm 0.05 (stat) \pm 0.17 (sys) \pm 0.45 (\pi_s))\%$ (consistent with PDG)

arXiv:2008.07198

#### |Vcb| from $B \rightarrow D^* l\nu$ (tagged)

- Signal extracted using  $m^2_{miss}$  distribution
- Hadronic tag using full event interpretation (FEI) algorithm
- $\begin{array}{ll} \bullet & B(B^0 {\rightarrow} D^* l^+ \nu) &= (4.51 \pm 0.41 (stat) \pm 0.27 (sys) \pm 0.45 (\pi_s))\% \\ (consistent \mbox{ with PDG}) & arXiv:2008.10299 \end{array}$

#### Vub| from $B \rightarrow \pi l \nu$ (tagged)

- Signal extracted using  $m^2_{_{miss}}$  distribution
- Hadronic tag using FEI algorithm
- $B(B^0 \rightarrow \pi^- l^+ \nu) = (1.58 \pm 0.43 (stat) \pm 0.07 (sys)) \times 10^{-4}$ (consistent with PDG)

arXiv:2008.08819



## One of the hot topic of Belle II: $B \rightarrow D^* \tau \nu$ a powerful probe for new physics



- 3.1σ discripancy
- Sensitive to new physics models through charged Higgs and leptoquarks at tree level diagram
- Belle II will validate the excess with better sensitivity

### Semileptonic and leptonic B decays: Belle II Target

- Precise measurements of the CKM matrix element are crucial for pinning down the allowed level of CP violation in the SM
- Anomalies in  $|V_{_{ub}}|,\,|V_{_{cb}}|,\,B{\rightarrow}D^*{\tau}\upsilon$  needs to be understood
- Purely leptonic modes are Belle II focus for luminosity  $> 1 \text{ ab}^{-1}$



| Observables                               | Belle                                                            | Belle II            |                        |
|-------------------------------------------|------------------------------------------------------------------|---------------------|------------------------|
|                                           | (2017)                                                           | $5 \text{ ab}^{-1}$ | $50 \mathrm{~ab^{-1}}$ |
| $ V_{cb} $ incl.                          | $42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$                         | 1.2%                | _                      |
| $ V_{cb} $ excl.                          | $39.0\cdot 10^{-3}\cdot (1\pm 3.0\%_{ m ex.}\pm 1.4\%_{ m th.})$ | 1.8%                | 1.4%                   |
| $ V_{ub} $ incl.                          | $4.47\cdot 10^{-3}\cdot (1\pm 6.0\%_{ m ex.}\pm 2.5\%_{ m th.})$ | 3.4%                | 3.0%                   |
| $ V_{ub} $ excl. (WA)                     | $3.65\cdot 10^{-3}\cdot (1\pm 2.5\%_{ m ex.}\pm 3.0\%_{ m th.})$ | 2.4%                | 1.2%                   |
| $\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$ | $91\cdot(1\pm24\%)$                                              | 9%                  | 4%                     |
| $\mathcal{B}(B 	o \mu \nu) \ [10^{-6}]$   | < 1.7                                                            | 20%                 | 7%                     |
| $R(B \to D \tau \nu)$ (Had. tag)          | $0.374 \cdot (1 \pm 16.5\%)$                                     | 6%                  | 3%                     |
| $R(B \to D^* \tau \nu)$ (Had. tag)        | $0.296 \cdot (1 \pm 7.4\%)$                                      | 3%                  | 2%                     |

#### The Belle II Physics Book, PTEP 2019, 123C01

### R(K) prospects at Belle II

#### First Belle II measurement of $B^+ \rightarrow K^+ l^+ l^-$

Signal yield extracted with 2D ML

fit to  $M_{bc}$  and  $\Delta E$ : 8.6<sup>+4.3</sup><sub>-3.9</sub>(stat) ± 0.4(syst)

- Significance: 2.7 sigma
- $\triangleright$  Peaking background from  $B^+ \to K^+ \pi^+ \pi^-$

#### Prospects for R(K)

- Measurement is going to be statistically limited for foreseeable future with leading systematics due to lepton ID~0.4%
- In order to confirm LHCb's R(K) anomaly (5 sigma) need at least 20 ab<sup>-1</sup>





# Search for $B^+ \rightarrow K^+ \nu \nu$ decays using an inclusive tagging method at Belle II

- SM branching fraction of B<sup>+</sup>→K<sup>+</sup>vv: (4.6±0.5) x 10<sup>-6</sup> (arXiv:1409.4557)
- Best upper limit by BaBar
- Belle II inclusive tag
  - New method
  - Signal track with highest  $p_T$
  - Inclusive tagging method  $\Rightarrow$  4 x higher signal efficiency than before
  - Analysis validated in  $B{\rightarrow}$  J/ $\psi$  K decays with J/ $\psi$  excluded from reconstruction
- Signal extracted using a binned ML fit to on- and off-resonance data with 175 nuisance parameters
- 90% CL upper limit: 4.1 x 10<sup>-5</sup>
- Submitted to Phys. Rev. Lett (arXiv:2104.12624)







| Experiment              | Year | Observed limit on ${ m BR}(B^+ 	o K^+ \nu \bar{ u})$ | Approach         | $Data_{[fb^{-1}]}$ |
|-------------------------|------|------------------------------------------------------|------------------|--------------------|
| BABAR                   | 2013 | < 1.6 × 10 <sup>-5</sup><br>[Phys.Rev.D87,112005]    | SL + Had<br>tag  | 429                |
| Belle                   | 2013 | < 5.5 × 10 <sup>-5</sup><br>[Phys.Rev.D87,111103(R)] | Had tag          | 711                |
| Belle                   | 2017 | < 1.9 × 10 <sup>-5</sup><br>[Phys.Rev.D96,091101(R)] | SL tag           | 711                |
| Belle II<br>preliminary | 2021 | $< 4.1 \times 10^{-5}$                               | Inclusive<br>tag | 63                 |

### Luminosity Prospects:

- Goal: 50  $ab^{-1}$  by next decade
- Short-term plan:
  - By summer 2022: 720 fb-1 (~ Belle dataset)
  - Summer 2022-spring 2023: full new pixel detector installation → important to maintain good vertex resolution at high luminosity
- Long term plan:
  - $\succ$  By 2026: ~15 ab -1 (~ 20 x Belle dataset)
  - 2026: QCS/IR modification necessary to reach design luminosity



## Big Picture

- The SM is very successful but leaves unanswered questions
- The Belle II experiment at SuperKEKB aims to probe new physics beyond the SM with ultimate precision measurement of heavy flavor decays by taking the performance to a new level:
  - -50 times integrated luminosity wrt. previous record
  - $-21^{\rm st}$  century detector technology
  - Probing new physics with unprecedented precision
- Early results demonstrate the full operation/processing/physics chain
- Look forward to new physics results from Belle II !

### More results not covered

- Radiative and electroweak Penguin B decays
  - Study of  $B \to K^* \gamma$  decays at Belle II  $\implies$  BELLE2-NOTE-PL-2019-021
- Dark sector (See talk by Laura Zani)
  - Search for an Invisibly Decaying Z' at Belle II → Phys. Rev. Lett. 124, 141801 (2020)

THANK YOU!