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Belle II and SuperKEKB



• super B-factory, located in Tsukuba, Japan

• asymmetric e+e- collider (e- at 7 GeV, e+ at 4 GeV, 

⟨βγ⟩≈0.284)

• commissioning run from Feb to Jul 2018

• regular operations started in Mar 2019

• operated around 10.58 GeV (=mϒ(4S))

• design luminosity 6x1035 cm-2 s-1
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➞ 30 times higher luminosity

SuperKEKB
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1.5x higher beam currents 
20x smaller beam spot

We are here





Dark Sector Physics at BaBar and Belle II (Torben Ferber)

Belle II: Detector

11

positrons e+

electrons e-

KL and muon detector (KLM): 
Resistive Plate Counters (RPC) (outer barrel) 
Scintillator + WLSF + MPPC (endcaps, inner barrel) 

Particle Identification (PID): 
Time-Of-Propagation counter (TOP) (barrel) 
Aerogel Ring-Imaging Cerenkov Counter (ARICH) 

Electromagnetic calorimeter (ECL): 
CsI(Tl) crystals, waveform sampling to measure time 
and energy (possible upgrade: pulse-shape) 
Non-projective gaps between crystals 

Vertex detectors (VXD): 
2 layer DEPFET pixel detectors (PXD) 
4 layer double-sided silicon strip detectors (SVD) 

Central drift chamber (CDC): 
He(50%):C2H6 (50%), small cells,  
fast electronics 

Magnet: 
1.5 T superconducting 

Belle II
• 1102 members and 123 institutes 

• 0.5 fb-1 collected during commissioning run in 2018

• 180 fb-1 collected up to now

• plan to collect 50 times more data than Belle

• rich physics program: B and D physics, quarkonium, τ, 

low mass dark sector,…
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Belle II L1 Trigger
• Belle II trigger system consists of two levels


low level trigger implemented in hardware (L1)

software-based high level trigger (HLT)


• identify and select events over beam backgrounds (Touschek 
effect, beam-gas scattering)


• L1 trigger

maximum average trigger rate of 30kHz

4 sub-detector triggers: CDC, ECL, TOP, KLM

trigger menu designed for different physics targets


• dedicated dark sector/low-multiplicity trigger lines

single photon trigger

single track trigger

3D tracks are reconstructed with a neural network 
approach

combination of full/short/neuro tracks

ECL clusters with various energy levels and angular 
separation
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FIG. 1: (a) Center of mass energy of photons in ee ! µµ� events, overlaid with the subset

passing the level 1 1GeV single-cluster trigger.

(b) Same events presented as a plot of e�ciency versus energy.

FIG. 2: (a) Center of mass energy of photons in ee ! µµ� events, overlaid with the subset

passing the level 1 0.5GeV single-cluster trigger.

(b) Same events presented as a plot of e�ciency versus photon energy.
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FIG. 1: The overall L1 trigger e�ciencies for SM ee ! ⌧⌧ ! 1⇥3 prong events in the (a)
combined and (b) individual channels. The data comes from the 2019a, 2019b and 2019c periods.
The following trigger combinations are considered: � 2 full tracks (↵o), � 3 full tracks (↵f), short
tracks (fso or sso or ↵s or fss or sss), ECL total energy (hie), � 4 clusters (c4), low multiplicity
� 3 clusters (lml0 or lml12), low multiplicity back-to-back clusters (lml8 or lml9 or lml10), low
multiplicity high energy cluster (lml1 or lml2 or lml4 or lml6 or lml7) and ECL µµ (eclmumu).
Statistical uncertainties are shown, although they are too small to be visible.

3



Dark Sector Searches

• probe light dark sectors with low-mass mediators O(GeV) 

• possible portals between SM and DM include


vector portal (dark photon A’, dark Z’)

pseudo-scalar portal (axion-like particle)

scalar portal

neutrino portal


• searches at Belle II profit from

hermetic detector

clean collision environment

excellent PID

dedicated low-multiplicity triggers (single photon/track trigger)
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→ first physics papers!



Invisible Z’
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Invisible Z’
• extend SM by adding a U(1)’ group 


• new massive gauge boson Z’ couples only to leptons of 2nd 
and 3rd generation


• Z’ coupled to Lμ-Lτ via g’


• focus on invisible Z’ decay produced with a pair of muons


• invisible decay channel explored for the first time
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�

µ+

µ�

Z 0

1

★ may serve as mediator between SM and 
DS 

★ may explain (g-2)μ 

★ may address anomalies in b→sμ+μ-

FIG. 1: Example of a Feynman diagram for the production of a light Z 0 boson in e+e� collisions
followed by its invisible decay to neutrinos or to dark matter
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(g0)2MZ0

24⇡
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The branching fraction (BF) for Z 0 ! invisible is therefore given by73

BF (Z 0 ! invisible) =
2�(Z 0 ! ⌫l⌫̄l)

2�(Z 0 ! ⌫l⌫̄l) + �(Z 0 ! µ+µ�) + �(Z 0 ! ⌧+⌧�)
(4)

where the branching fraction to one neutrino species is half of the branching fraction to one74

charged lepton flavour. The reason is, of course, that the Z 0 only couples to left-handed75

neutrino chiralities whereas it couples to both left- and right-handed charged leptons. The76

expected branching ratios to neutrino decays of the Z 0 are therefore77

MZ0 < 2Mµ =) BF [Z 0 ! invisible] = 1, (5)

2Mµ < MZ0 < 2M⌧ =) BF [Z 0 ! invisible] ' 1/2, (6)

MZ0 > 2M⌧ =) BF [Z 0 ! invisible] ' 1/3. (7)

Of course in the case of kinematic accessible decays of Z 0 to dark matter particles � (�̄),78

such as Z 0 ! ��̄ if MZ0 > 2M�, one can expect that BF (Z 0 ! ��̄) = 1.79

In the second model that we take under consideration, we allow the Z 0 to couple to all80

leptons, but we also allow for charged LFV which in turn enables us to search for final state81

in which no or little standard model background is to be expected [9] [10].82

In order to check these two models, we perform a search for the following processes:83

e+e� ! µ+µ�Z 0, Z 0 ! invisible, (8)

e+e� ! µ±e⌥Z 0, Z 0 ! invisible. (9)

If one defines the distribution of the mass squared recoiling against the µµ or µe systems as84

M2
r,µµ = s+M2

µ+µ� � 2
p
sECMS

µ+µ� , (10)

M2
r,µe = s+M2

µ±e⌥ � 2
p
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µ±e⌥ , (11)
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1. INTRODUCTION7

Although the Standard Model (SM) has revealed itself as a very successful and highly8

predictive theory of fundamental particles and interactions, it can not be considered as a9

complete theory of nature due to the fact that many phenomena are not accounted for. This10

is the case for example of neutrino masses, gravity, dark matter or dark energy, just to name11

a few.12

One of the simplest way to extend the SM and include new physics is by adding an13

extra U(1)0 to the gauge group of the SM [1]. Such a U(1)0 group would give rise to an14

extra gauge boson, called a Z 0 boson, that could couple to SM particles as well to new still15

undiscovered particles, such as dark matter particles [2–5]. Since dark matter particles are16

electrically neutral and do not interact (or interact very weakly) with ordinary matter, no17

direct detection in Belle II is expected. To infer its presence in the collision data, it is crucial18

to identify specific processes that can be used to unambiguously identify the production and19

subsequent invisible decay of such a Z 0.20

Amongst the many theoretical frameworks that extend the SM particle content with the21

existence of new dark sector particles and forces, we consider here the invisible decays of a22

light Z 0 boson in two di↵erent models:23

1. A Z 0 belonging to a Lµ � L⌧ symmetry;24

2. A Z 0 which couples to all leptons, being also sensitive to some Lepton Flavour Violation25

(LFV) e↵ects.26

As far as option 1 is concerned, this model is poorly constrained experimentally at low27

masses, and the specific invisible decay topology is being investigated here for the first time.28

At the time this document is being prepared, the only similar measurement for a low mass29

dark Z 0 related to the Lµ � L⌧ symmetry was performed by the BaBar experiment for a Z 0
30

decaying to muons [6].31

Under a Lµ�L⌧ symmetry, the Z 0 boson would couple only to µ and ⌧ (and the respective32

⌫µ and ⌫⌧ ), with a new coupling constant indicated with g0, so that a search for such a boson33

resulting in a null outcome (i.e. background only hypothesis) would result in an upper limit34

to the value of g0. The BaBar experiment has provided 90% confidence level (CL) upper35

limits (UL) to g0 at the level of 10�3 for MZ0 ⇠ few MeV/c2 and at the level of 10�1 for36

MZ0 ⇠ 8 GeV/c2.37

An example of a Feynman diagram depicting how such a process would proceed including38

the invisible decay of the Z 0 is shown in FIG. 1. The interaction Lagrangian for such a model39

is given by40

L =
X

`

✓g0 ¯̀�µZ 0
µ` (1)

where the sum is extended to ` = µ, ⌧, ⌫µ,L, ⌫⌧,L including the heavy leptons and their relative41

(left-handed) neutrino species, with ✓ = �1 if ` = µ, ⌫µ,L and ✓ = 1 if ` = ⌧, ⌫⌧,L. The partial42

widths are obtained from [7]43

�(Z 0 ! l+l�) =
(g0)2MZ0

12⇡

✓
1 +

2M2
l

M2
Z0

◆s

1� 4M2
l

M2
Z0

(2)
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Invisible Z’
• reconstruct recoiling mass against μμ-pair, 

require nothing else to be in rest of event


• look for a peak in recoil mass distribution


• main bkgs arise from QED processes:


μ+μ-(γ)


τ+τ-(γ), τ➝μνν


μ+μ-e+e-
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Fig. 2: Recoil mass spectrum of the µ+µ� sample. Simu-
lated samples (histograms) are rescaled for luminosity, trigger
(0.79), and tracking (0.90) efficiencies, and the correction fac-
tor (0.75, see text). Histogram bin widths indicate the recoil
mass windows.

where only values g0  1 are displayed. The observed
upper limits for models with BF(Z 0 ! invisible) < 1 can
be obtained by scaling the light blue curve as 1/

p
BF.
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Fig. 3: 90% CL upper limits on coupling constant g0. Dark
blue filled areas show the exclusion regions for g0 at 90% CL,
assuming the Lµ � L⌧ predicted BF for Z0 ! invisible; light
blue areas are for BF(Z0 ! invisible) = 1. The solid and
dashed lines are the expected sensitivities in the two hypothe-
ses. The red band shows the region that could explain the
muon anomalous magnetic moment (g � 2)µ ± 2� [1, 5]. The
step at MZ0 = 2mµ for the Lµ � L⌧ exclusion region reflects
the change in BF(Z0 ! ⌫⌫̄).

The final recoil mass spectrum of the e±µ⌥ sample is
shown in Fig. 4, together with background simulations.
Again, no anomalies are observed above 3� local signifi-
cance [28]. Model-independent 90% CL upper limits on
the LFV Z 0 efficiency times cross section are computed
using the Bayesian procedure described above and cross-
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checked with a frequentist Feldman-Cousins procedure
(Fig. 5). Additional plots and numerical results can be
found in the supplemental material [28].
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In summary, we have searched for an invisibly decay-
ing Z 0 boson in the process e+e� ! µ+µ�Z 0 and for a
LFV Z 0 in the process e+e� ! e±µ⌥Z 0, using 276 pb�1

of data collected by Belle II at SuperKEKB in 2018. We
find no significant excess and set for the first time 90%
CL upper limits on the coupling constant g0 in the range
5 ⇥ 10�2 to 1 for the former case and to the efficiency
times cross section around 10 fb for the latter. The
full Belle II data set, with better muon identification,
a deeper knowledge of the detector, and the use of mul-
tivariate analysis techniques should be sensitive to the
10�3 – 10�4 g0 region, where the (g� 2)µ band currently
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Fig. 4: Recoil mass spectrum of the e±µ⌥ sample. Simu-
lated samples (histograms) are rescaled for luminosity, trigger
(0.79), and tracking (0.90) efficiencies. Histogram bin widths
indicate the recoil mass windows.

checked with a frequentist Feldman-Cousins procedure
(Fig. 5). Additional plots and numerical results can be
found in the supplemental material [28].
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In summary, we have searched for an invisibly decay-
ing Z 0 boson in the process e+e� ! µ+µ�Z 0 and for a
LFV Z 0 in the process e+e� ! e±µ⌥Z 0, using 276 pb�1

of data collected by Belle II at SuperKEKB in 2018. We
find no significant excess and set for the first time 90%
CL upper limits on the coupling constant g0 in the range
5 ⇥ 10�2 to 1 for the former case and to the efficiency
times cross section around 10 fb for the latter. The
full Belle II data set, with better muon identification,
a deeper knowledge of the detector, and the use of mul-
tivariate analysis techniques should be sensitive to the
10�3 – 10�4 g0 region, where the (g� 2)µ band currently
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Invisible Z’
• reconstruct recoiling mass against μμ-pair, 

require nothing else to be in rest of event


• look for a peak in recoil mass distribution


• main bkgs arise from QED processes:


μ+μ-(γ)


τ+τ-(γ), τ➝μνν


μ+μ-e+e-

12

0 0.5 1 1.5 2 2.5 3
]2 < 3 [GeV/cµµM

0

100

200

2
C

ou
nt

s/
10

0 
M

eV
/c

 Data
-1 = 276 pb Ldt∫

Belle II 2018 )γ(-µ+µ →-e+e

)γ(-τ+τ →-e+e

-µ+µ-e+ e→-e+e

3 3.5 4 4.5 5 5.5 6
]2 < 6 [GeV/cµµ3 < M

0

5

10

15

2
C

ou
nt

s/
10

0 
M

eV
/c

 Data
-1 = 276 pb Ldt∫

Belle II 2018 )γ(-µ+µ →-e+e

)γ(-τ+τ →-e+e

-µ+µ-e+ e→-e+e

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
]2 > 6 [GeV/cµµM

0

0.5

1

2
C

ou
nt

s/
10

0 
M

eV
/c

 Data
-1 = 276 pb Ldt∫

Belle II 2018 )γ(-µ+µ →-e+e

)γ(-τ+τ →-e+e

-µ+µ-e+ e→-e+e

0 1 2 3 4 5 6 7 8
]2Recoil mass [GeV/c

2−10

1−10

1

10

210

C
ou

nt
s

 Data
-1 = 276 pb Ldt∫

Belle II 2018

)γ(-µ+µ →-e+e

)γ(-τ+τ →-e+e
-µ+µ-e+ e→-e+e

0 1 2 3 4 5 6 7 8
]2 [GeV/cZ'M

4−10

3−10

2−10

1−10

1

g'
 (obs.) 90% CL ULτ-LµL

 inv)=1 (obs.) 90% CL UL→ , BF(Z'τ-LµL

 expected ULτ-LµL

 inv)=1 expected UL→ , BF(Z'τ-LµL
-1 = 276 pbLdt ∫

Belle II 2018

σ2±
µ

(g-2)

Belle 2 DATA
event display
run # 3236
Event #493624
M

Z’
 candidate 2 GeV/c2

Michel Bertemes - HEPHY Vienna

* preliminary (conservative) systematics

PRL 124, 141801 (2020)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.141801


�

µ+

µ�

Z 0
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e

Invisible Z’ - LFV

• look for LFV Z’ that couples to eμ


• model-independent search with same 
selection criteria


• included in same publication
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Fig. 2: Recoil mass spectrum of the µ+µ� sample. Simu-
lated samples (histograms) are rescaled for luminosity, trigger
(0.79), and tracking (0.90) efficiencies, and the correction fac-
tor (0.75, see text). Histogram bin widths indicate the recoil
mass windows.

where only values g0  1 are displayed. The observed
upper limits for models with BF(Z 0 ! invisible) < 1 can
be obtained by scaling the light blue curve as 1/

p
BF.
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The final recoil mass spectrum of the e±µ⌥ sample is
shown in Fig. 4, together with background simulations.
Again, no anomalies are observed above 3� local signifi-
cance [28]. Model-independent 90% CL upper limits on
the LFV Z 0 efficiency times cross section are computed
using the Bayesian procedure described above and cross-
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checked with a frequentist Feldman-Cousins procedure
(Fig. 5). Additional plots and numerical results can be
found in the supplemental material [28].
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In summary, we have searched for an invisibly decay-
ing Z 0 boson in the process e+e� ! µ+µ�Z 0 and for a
LFV Z 0 in the process e+e� ! e±µ⌥Z 0, using 276 pb�1

of data collected by Belle II at SuperKEKB in 2018. We
find no significant excess and set for the first time 90%
CL upper limits on the coupling constant g0 in the range
5 ⇥ 10�2 to 1 for the former case and to the efficiency
times cross section around 10 fb for the latter. The
full Belle II data set, with better muon identification,
a deeper knowledge of the detector, and the use of mul-
tivariate analysis techniques should be sensitive to the
10�3 – 10�4 g0 region, where the (g� 2)µ band currently
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Dark Sector Physics at BaBar and Belle II (Torben Ferber)

Belle II: ALPs below 200 MeV?

23
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Figure 8: Comparison of ALP production in e+e� collisions via ALP-strahlung and via

photon fusion. The left panel shows the total cross section, the right panel the di↵erential

cross section with respect to the longitudinal momentum pz.

explore with Belle II and the LHC. The LHC, on the other hand, is sensitive mostly to the

coupling ga�Z , while Belle II and SHiP directly probe the ALP-photon coupling ga�� . The

combination of these experiments will therefore allow to make significant progress in the

exploration of the ALP parameter space. Moreover, we can hope to see an ALP signal in

more than one experiment, which would potentially enable us to reconstruct its properties

and coupling structure.

5.3 Photon fusion

So far we have focused on the case that the ALP is produced in association with a highly-

energetic photon, which facilitates an e�cient reconstruction of these events. For ALPs

produced in photon fusion the situation becomes more complicated, as the transverse mo-

menta of electron and positron after the collision (and hence their polar angle) are too

small to be detectable.

Searches for ALPs produced in photon fusion are interesting for two reasons: First, as

shown in the left panel of figure 8 the total ALP production cross section from photon fusion

significantly exceeds the one from ALP-strahlung (in particular for small ALP masses), so

that photon fusion is responsible for the vast majority of ALPs produced at Belle II [22, 29].

And second, the production cross section from photon fusion peaks for small ALP momenta,

i.e. ALPs will be produced dominantly at rest (see right panel of figure 8). This means

that, in contrast to ALP-strahlung, the opening angle between the two photons produced

in the ALP decay will typically be large even for low-mass ALPs.

The signature in the Belle II detector will consist of two photons with an invariant mass

equal to the ALP mass and missing energy along the beam-pipe. The azimuthal angles of

the two photons are back-to-back in the centre-of-mass frame. The Belle II acceptance for

ALPs produced in photon fusion is high: For ma = 0.2GeV (ma = 2.0GeV) 66% (89%)

of all ALPs have both decay photons in the ECL acceptance. However, for low mass ALPs

the photon energy is small and often below a typical trigger threshold of 100MeV per

ECL cluster. Studies have shown a very large beam-induced background of low energy

ECL clusters [43], making the detection of ALPs produced in photon fusion very di�cult.

– 21 –

▸ For ALP masses below ~200 MeV, the decay photons 
are reconstructed as one ECL cluster even in offline 
analysis. Currently under study: 

▸ Untagged (electrons not seen) ALP fusion 
production has a much higher cross section and 
produces ALPs with less boost (difficult to trigger). 

▸ Shower shapes for merged cluster are different, 
MVA based reconstruction has better separation 
power (but events have to pass L1 trigger). 

▸ Pair conversion of one decay photon costs 
statistics, but yields a distinctive four particle final 
state.

Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg,  
submitted to JHEP (2017), arXiv:1709.00009
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bosons and appear in different extensions to the SM


• coupling and mass of ALPs are taken to be independent


• simplest approach at Belle II is via two photon coupling 


photon-fusion, high QED background
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FIG. 1. Excluded regions in ALP parameter space (figure adapted from [6, 10–12] with added

limits from [13–19]). Our bound is shown in dark blue (“SN decay”).

We focus on SN 1987a, which has already been exploited to derive a variety of limits

on ALPs. Perhaps the simplest one arises from the energy loss implied by significant ALP

emission, which would reduce the measured neutrino burst below the ⇠ 10 s observed by

neutrino detectors [20, 21] (light green region labelled SN 1987a in Fig. 1). For very light

ALPs with masses below ma < few⇥ 10�10 eV a better limit can be obtained by taking into

account that ALPs emitted from the supernova can convert into photons in the magnetic field

of the galaxy [22, 23], but no gamma-ray signal was ever detected after SN 1987a [17, 24–28]

(dark green region labelled SN 1987a)1. For heavier ALPs this does not work because the

reconversion into photons is strongly suppressed.

For su�ciently heavy ALPs with masses in the 10 keV - 100 MeV region however, an-

other process becomes possible: the decay into two photons. This possibility was analysed

1 For a future supernova the sensitivity could be improved employing Fermi-LAT [29].
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We focus on SN 1987a, which has already been exploited to derive a variety of limits

on ALPs. Perhaps the simplest one arises from the energy loss implied by significant ALP

emission, which would reduce the measured neutrino burst below the ⇠ 10 s observed by

neutrino detectors [20, 21] (light green region labelled SN 1987a in Fig. 1). For very light

ALPs with masses below ma < few⇥ 10�10 eV a better limit can be obtained by taking into

account that ALPs emitted from the supernova can convert into photons in the magnetic field

of the galaxy [22, 23], but no gamma-ray signal was ever detected after SN 1987a [17, 24–28]

(dark green region labelled SN 1987a)1. For heavier ALPs this does not work because the

reconversion into photons is strongly suppressed.

For su�ciently heavy ALPs with masses in the 10 keV - 100 MeV region however, an-

other process becomes possible: the decay into two photons. This possibility was analysed

1 For a future supernova the sensitivity could be improved employing Fermi-LAT [29].
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We focus on SN 1987a, which has already been exploited to derive a variety of limits

on ALPs. Perhaps the simplest one arises from the energy loss implied by significant ALP

emission, which would reduce the measured neutrino burst below the ⇠ 10 s observed by

neutrino detectors [20, 21] (light green region labelled SN 1987a in Fig. 1). For very light

ALPs with masses below ma < few⇥ 10�10 eV a better limit can be obtained by taking into

account that ALPs emitted from the supernova can convert into photons in the magnetic field

of the galaxy [22, 23], but no gamma-ray signal was ever detected after SN 1987a [17, 24–28]

(dark green region labelled SN 1987a)1. For heavier ALPs this does not work because the

reconversion into photons is strongly suppressed.

For su�ciently heavy ALPs with masses in the 10 keV - 100 MeV region however, an-

other process becomes possible: the decay into two photons. This possibility was analysed

1 For a future supernova the sensitivity could be improved employing Fermi-LAT [29].
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ALP decays outside of 
the detector or decays 
into invisible particles: 
Single photon final state.

Two of the 
photons  overlap 

or merge.

Three resolved, 
high energetic 
photons.

The searches for 
invisible and visible 
ALP decays veto this 
region.
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Figure 5: Illustration of the di↵erent kinematic regimes relevant for ALP decays into two

photons with Belle II.

It should be noted that while the dominant physics background for this study comes

from e+e� ! ��(�) events, the largest fraction of the trigger rate for trigger thresholds

. 1.8GeV is due to radiative Bhabha events e+e� ! e+e��(�) where both tracks are out

of the detector acceptance.

5.2 ALP decays into two photons

The experimental signature of the decays into two photons is determined by the relation

between mass and coupling of the ALP. This relation a↵ects both the decay length of the

ALP and the opening angle of the decay photons. It leads to four di↵erent experimental

signatures (see figure 5):

1. ALPs with a mass of O(GeV) decay promptly, and the opening angle of the decay

photons is large enough that both decay photons can be resolved in the Belle II

detector (resolved).

2. For lighter ALP masses but large couplings ga�� , the decay is prompt but the ALP is

highly boosted and the decay photons merge into one reconstructed cluster in Belle II

calorimeter if ma . 150MeV (merged).15

3. Even lighter ALPs decay displaced from the interaction point but still inside the

Belle II detector. This is a challenging signature that consists of two reconstructed

clusters, one of which has a displaced vertex and contains two merged photons. The

latter two conditions typically yield a bad quality of the reconstructed photon can-

didate which is not included in resolved searches with final state photons. There

is however enough detector activity in the ECL or KLM that these are vetoed in

searches for invisible final states to reduce high rate e+e� ! �� backgrounds.

15
This corresponds to an average opening angle of about (3� 5)

�
in the lab system that depends on the

position in the detector.
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Belle II: Axion-Like Particles decaying to photons

ALPs
• different topologies according to ALP mass and coupling


• search for 3 photons with energies summing up to beam energy and no tracks in event


• look for peak in di-photon and recoil mass


• bkgs:


γγ(γ)


e+e-(γ)


Pγ, P=π0/η/η’, P➝γγ

16Michel Bertemes - HEPHY Vienna



ALPs

• performed search in mass range from 0.2 to 9.7 GeV/c2


• no excess was found


• upper limits on cross section translated to coupling constant


• to be repeated with more data

17Michel Bertemes - HEPHY Vienna
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found to have a negligible impact on the mass resolution
and is not included as a systematic uncertainty.

We describe the backgrounds by polynomials of the
minimum complexity consistent with the data features.
Polynomials of second to fifth order are used: second
for 0.2 < ma  0.5GeV/c2, fourth for 0.5 < ma 

6.85GeV/c2, and fifth for 6.85 < ma  9.7GeV/c2. The
background polynomial parameters are not fixed by sim-
ulation but are free parameters of each data fit. Each
fit is performed in a mass range that corresponds to
�20�CB to +30�CB for M2

�� , and �25�CB to +25�CB

for M2
recoil. In addition, the fit ranges are constrained

between M2
�� > 0GeV2/c4 and M2

recoil < 100.5GeV2/c4.
The choice of the order of background polynomial and fit
range is optimized based on the following conditions: giv-
ing a reduced �2 close to one, providing locally smooth
fit results, and being consistent with minimal variations
between adjacent fit ranges. Peaking backgrounds from
e+e� ! P� are very small compared to the expected sta-
tistical uncertainty on the signal yield and found to be
modeled adequately by the polynomial background PDF.

The systematic uncertainties due to the signal e�-
ciency and the signal mass resolution are included as
Gaussian nuisance parameters with a width equal to the
systematic uncertainty. The systematic uncertainty due
to the background shape, which is the dominant source
of systematic uncertainty, is estimated by repeating all
fits with alternative fit ranges changed by ±5�CB and
with the polynomial orders modified by ±1. For each
mass value ma, we report the smallest of all signal signif-
icance values determined from each background model.
The local significance including systematic uncertainties
is given by S =

p
2 ln(L/Lbkg), where L is the maximum

likelihood for the fit, and Lbkg is the likelihood for a fit to
the background-only hypothesis. The local significances,
multiplied by the sign of the signal yield, are shown in
Fig. 3. The largest local significance, including system-
atic uncertainties, is found near ma = 0.477GeV/c2 with
a value of S = 2.8�.

By dividing the signal yield by the signal e�ciency and
the integrated luminosity, we obtain the ALP cross sec-
tion �a. We compute the 95% confidence level (C.L.)
upper limits on �a as a function of ma using a one-sided
frequentist profile-likelihood method [31]. For eachma fit
result, we report the least stringent of all 95% C.L. up-
per limits determined from the variations of background
model and fit range. We convert the cross section limit
to the coupling limit using

�a =
g2a��↵QED
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where ↵QED is the electromagnetic coupling [6]. This
calculation does not take into account any energy de-
pendence of ↵QED and ga�� itself [32]. An additional
0.2% collision-energy uncertainty when converting �a to

FIG. 3. Local signal significance S multiplied by the
sign of the signal yield, including systematic uncertainties,
as a function of ALP mass ma. The vertical dashed lines
indicate (from left to right) changes in the default back-
ground PDF (0.5GeV/c2), in the photon energy selection cri-
teria (4.0GeV/c2), and in the invariant-mass determination
method (6.85GeV/c2).

ga�� results in a negligible additional systematic uncer-
tainty. Our median limit expected in the absence of a
signal and the observed upper limits on �a are shown
in Fig. 4. The observed upper limits on the photon cou-
plings ga�� of ALPs, as well as existing constraints from
previous experiments, are shown in Fig. 5. Additional
plots and numerical results can be found in the Supple-
mental Material [33]. Our results provide the best limits
for 0.2 < ma < 5GeV/c2. This region of ALP param-
eter space is completely unconstrained by cosmological
considerations [34]. The remaining mass region below
0.2GeV/c2 is challenging to probe at colliders due to the
poor spatial resolution of photons from highly boosted
ALP decays, and irreducible peaking backgrounds from
⇡0 production.

FIG. 4. Expected and observed upper limits (95% C.L.) on
the ALP cross section �a. The vertical dashed lines are the
same as those in Fig. 3.

8

FIG. 5. Upper limit (95% C.L.) on the ALP-photon cou-
pling from this analysis and previous constraints from electron
beam-dump experiments and e+e� ! �+invisible [6, 9], pro-
ton beam-dump experiments [8], e+e� ! �� [11], a photon-
beam experiment [12], and heavy-ion collisions [13].

In conclusion, we search for e+e� ! �a, a ! �� in the
ALP mass range 0.2 < ma < 9.7GeV/c2 using Belle II
data corresponding to an integrated luminosity of
445 pb�1. We do not observe any significant excess of
events consistent with the signal process and set 95%C.L.
upper limits on the photon coupling ga�� at the level of
10�3 GeV�1. These limits, the first obtained for the fully
reconstructed three-photon final state, are more restric-
tive than existing limits from LEP-II [11]. In the future,
with increased luminosity, Belle II is expected to improve
the sensitivity to ga�� by more than one order of magni-
tude [6].
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Dark Photon



 Probing Dark Photons and ALPs at B-factories  (Torben Ferber)

BaBar: Invisible Dark Photon decays, backgrounds
�5

Unlike the Belle II electromagnetic calorimeter (see 
pictures), the BaBar calorimeter is symmetric in Φ (and 
hence has projective cracks between the crystals): 

• Excellent to measure charge asymmetries. 
• Not optimal for uniform photon efficiency.

Φ
Belle II 

Belle II 

• explore invisible decay first, A’➝χ1χ2


• require one ISR photon and nothing else in 
the event


• needs a single photon trigger (not available 
in Belle, 10% of data in BaBar)


• bkgs include γγ(γ), e+e-γ(γ) and cosmics


• advantages over BaBar


no projective cracks in ECL


more hermetic calorimeter


KLM veto

Dark Photon
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• introduce in analogy to SM a spontaneous symmetry breaking mechanism of U(1) with new particle, 
dark Higgs h’


• e+e-→A’h’ (Higgsstrahlung)

focus on mh’ < mA’, 

h’ has large lifetime to escape detection, A’ decays into SM particles

2 charged particle final state plus missing energy

find a peak in two dimensional distribution of recoiling mass vs dimuon mass

previously only investigated by KLOE

20

What about a Dark Higgs?
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σ ∝ ϵ2 × αD
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• main SM background contributions arise from

μ+μ-(γ)

τ+τ-(γ)

e+e-μ+μ- 


• background suppression based on kinematic 
features


• improvements w.r.t KLOE result

probing unconstrained regions in 2D 
mass plane

probing non trivial regions of ε2αD 


• ongoing analysis, recently started unblinding

• expect results soon

21Michel Bertemes - HEPHY Vienna

Phys.Lett.B 747 (2015) 365-372
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What about a Dark Higgs?
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Conclusion
• broad and active program of DS physics at Belle II


• available phase-space is probed with many different models


• further analysis include Inelastic Dark Matter, Z’ to visible, DM searches in 
B decays…


• first results published


• much more to come



Backup



• Search for inelastic Dark Matter

long-lived particle detector signature and unconstrained parameter space

displaced pair of electrons, muons or hadrons


• Search for long-lived scalar in rare B meson decays

B➝KS, S➝μμ,ππ,KK

generic scalar that mixes with the Higgs sector

small mixing leads to large lifetime and small production cross section

24

Additional searches
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e−, µ−, hadron

A′∗

Figure 2: The Feynman diagram depicting the photon and displaced fermion signature in

the context of the inelastic DM scenario.

the decay vertex can be reconstructed, one obtains a displaced signature. In this section we

will first review the relevant aspects of the Belle II experiment, present our implementation

of the inelastic DM model and then discuss the sensitivity of Belle II for both of these

signatures.

3.1 The Belle II experiment

The Belle II experiment at the SuperKEKB accelerator is a second generation B -factory

and successor of the Belle and BaBar experiments [19]. Construction was completed in

early 2019. SuperKEKB is a circular asymmetric e
+
e
� collider with a nominal collision

energy of
p

s = 10.58 GeV. The design instantaneous luminosity is 8 ⇥ 1035 cm�2 s�1,

which is about 40 times higher than at the predecessor collider KEKB.

The Belle II detector is a large-solid-angle magnetic spectrometer. The following sub-

detectors are particularly relevant for the searches described in this paper: a tracking

system that consists of six layers of vertex detectors (VXD), including two inner layers of

silicon pixel detectors (PXD)10 and four outer layers of silicon vertex detectors (SVD), and

a 56-layer central drift chamber (CDC) which covers a polar angle region of (17�150)�. The

electromagnetic calorimeter (ECL) comprising CsI(Tl) crystals with an upgraded waveform

sampling readout for beam background suppression covers a polar angle region of (12�155)�

and is located inside a superconducting solenoid coil that provides a 1.5T magnetic field.

The ECL has ine�cient gaps between the endcaps and the barrel for polar angles between

(31.3�32.2)� and (128.7�130.7)�. An iron flux-return is located outside of the magnet coil

and is instrumented with resistive plate chambers and plastic scintillators to mainly detect

K
0
L mesons, neutrons, and muons (KLM) that covers a polar angle region of (25 � 145)�.

We study the Belle II sensitivity for a dataset corresponding to an integrated luminosity

of 20 fb�1 for consistency with [20]. This dataset is expected to be recorded by Belle II in

early 2020. To show the potential reach of Belle II we also estimate the sensitivities for both

10
During the first years of Belle II only the first layer and a fraction of the second PXD layer are instru-

mented. We assume that this has a negligible e↵ect for the searches described in this paper.
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FIG. 2: The �E distribution for the background samples, and signal models at di↵erent masses
and the same mixing angle. The signal samples show the typical peaking shape around zero, while
backgrounds from non-B samples show a slowinly falling behaviour from negative to positive �E
valyes. The low mass sample has a considerably larger lifetime at the same mixing angle compared
to the larger mass samples. The �E variable shows a larger sensitivity to e↵ects of the larger
lifetime for small scalar masses, resulting in the slight shift in the blue distribution.
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