

Beauty physics at Belle II

Christoph Schwanda Institute of High Energy Physics, Austrian Academy of Sciences

On behalf of the Belle II collaboration

May 25, 2021

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

The beauty of B physics

- The power of indirect searches
 - GIM mechanism (1970): charm presence invoked from the suppression of $K^0 \rightarrow \mu\mu$ before the discovery of J/ ψ (1974)
 - Kobayashi-Maskawa (1973): 3 generation quark mixing needed to explain CP violation in neutral kaon decays
 - Top mass limit >50 GeV inferred from $B^{0}-\overline{B^{0}}$ mixing (1987) before actual top discovery top (1995)
- Because of the large b-quark mass, loop and rare B decays offer a rich potential for indirect searches of New Physics (NP)

SuperKEKB and Belle II

The SuperKEKB machine

- Asymmetric e⁺e⁻ collider optimized for luminosity
 - On-threshold production of BB (10.58 GeV)
 - Aims at an integrated luminosity of 50/ab (about 50 times the B factory data samples)
 - This is achieved by a x20 times smaller β_y* (nano-beam scheme) and x1.5 times higher beam currents compared to KEKB

Belle II luminosity status

- SuperKEKB/Belle II have been operating since 2019 including the COVID-19 pandemic period
- Instantenous luminosity record: 2.957 x 10³⁴/cm2/s (May 18, 2021)
- Total recorded: 162.27/fb (May 24, 2021)

Luminosity prospects

- Long shutdown from Summer 2022
 - For PXD layer 2 installation and TOP PMT replacement
 - Belle II luminosity will reach to about the Belle data sample (711/fb)
- Long shutdown 2026
 - For IR upgrade (QCS final focussing magnets upgrade)
 - About 15/ab recorded by 2026
- Ultimate luminosity goal is 50/ab by ~2030

Belle II physics covered in this talk

• $B^+ \rightarrow K^+ \nu \overline{\nu}$ with inclusive tagging

 \rightarrow Cyrille Praz "Search for rare electroweak decay B⁺ -> K⁺ $v\overline{v}$ in early Belle II dataset" (DM VI, May 26)

• Towards R(K) in Belle II

→ Soumen Halder "Results and Prospects of Radiative and Electroweak Penguin Decays at Belle (II)" (Higgs III, May 26)

- Measurements of the CKM angles
 - → Chiara La Licata "The re-discovery of the decays for the CP violation measurements at Belle II" (Flavor II, May 24)

 \rightarrow Sebastiano Raiz "Charmless B decays at Belle II" (Flavor I, May 24)

Search for ${\rm B^+} \rightarrow {\rm K^+} \nu \bar{\nu}$

Theory ${\rm B^+} \rightarrow {\rm K^+}\nu\nu{\rm bar}$

- Electroweak penguin and box diagram contributions
- SM branching fraction: (4.6 +/- 0.5) x 10⁻⁶ (arXiv:1409.4557)
- Not observed yet, best upper limit (BaBar) <1.6 x 10⁻⁵

Belle II inclusive tag

- 1. Reconstruct signal = the highest p_T track with at least 1 PXD hit (~80% ϵ_{sig})
- 2. All other tracks and clusters reconstructed as rest-of-event (ROE) object
- 3. Discriminating variables are identified and used later as an input to Boosted Decision Trees (BDTs)
 - Event-shape, ROE dynamics, Kinematics of signal B, Vertexing variables

In comparison with tagged approaches this inclusive tag approach leads to **higher signal efficiency but also larger background contributions** from *B*decays (Neutral/Charged *B*) and continuum production (e+e- $\rightarrow c\bar{c}, s\bar{s}, u\bar{u}, d\bar{d}, \tau$ pair)

Belle II inclusive tag (2)

MVA Selection and Measurement Region Definition:

4. Two consecutive BDTs are trained and applied to suppress the backgrounds

(signal: $\mathbf{B}^+ \to \mathbf{K}^+ \nu \bar{\nu}$, background: generic B decays + continuum)

5. Identify signal region (SR) with BDT₂ output and bin further in 2D: BDT₂ x $p_T(K^+)$ to maximise sensitivity

Moriond 2021:63 fb⁻¹

Belle II preliminary result

- Signal extracted using a binned ML fit to on- and off-resonance data with 175 nuisance parameters
- Preliminary 90% CL upper limit: 4.1 x 10⁻⁵
- Submitted to Phys. Rev. Lett. (arXiv:2104.12624)

 1×10^{-5}

					CLs upper limit scan	
					Belle II preliminary Expected	
Experiment	Year	Observed limit on ${ m BR}(B^+ \to K^+ \nu \bar{\nu})$	Approach	$Data_{[fb^{-1}]}$	$\begin{bmatrix} 0.8 \\ \vdots \\ 0.6 \end{bmatrix} \stackrel{\int \mathcal{L} dt = (63 + 9) fb^{-1}}{=} \\ \begin{bmatrix} \text{Expected} \pm 1\sigma \\ \vdots \\ \text{Expected} \pm 2\sigma \\ \hline \end{bmatrix} \\ \begin{bmatrix} 0.8 \\ \vdots \\ 0.8 \end{bmatrix} \stackrel{(a)}{=} \\ \begin{bmatrix} 0.8 \\ 0.8 \\ \vdots \\ 0.8 \end{bmatrix} \stackrel{(a)}{=} \\ \begin{bmatrix} 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{bmatrix} \stackrel{(a)}{=} \\ \begin{bmatrix} 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{bmatrix} \stackrel{(a)}{=} \\ \begin{bmatrix} 0.8 \\ 0$	
BABAR	2013	$< 1.6 \times 10^{-5}$ [Phys.Rev.D87,112005]	SL + Had tag	429	ງິ 0.6 ງິ 0.4 - 90% CL	
Belle	2013	< 5.5 × 10 ⁻⁵ [Phys.Rev.D87,111103(R)]	Had tag	711	$0.2 \begin{bmatrix} \text{Expected: } 2.3 \times 10^{-5} \\ \text{Observed: } 4.1 \times 10^{-5} \end{bmatrix}$	
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tag	711	$0.0 \frac{1}{0} \frac{2}{2} \frac{4}{4} \frac{6}{6} \frac{8}{8}$	
Belle II preliminary	2021	$< 4.1 \times 10^{-5}$	Inclusive tag	63	$ \begin{bmatrix} D^{*} \rightarrow K^{*} \nu \nu \text{ branching fraction} \\ 13 \end{bmatrix} $	

R(K) and R(K*)

Searching for New Physics in $b \rightarrow sl^+l^-$

1. Branching Fractions

 $B
ightarrow K^{(*)} \mu^+ \mu^-$, $B_s
ightarrow \phi \mu^+ \mu^-$, $\Lambda_b
ightarrow \Lambda \mu^+ \mu^-$

- 2. Angular analyses $B \rightarrow K^{(*)}\mu^+\mu^-, \Lambda_b \rightarrow \Lambda\mu^+\mu^-$
- 3. Lepton Flavour Universality involving μ/e ratios $B^0 \to K^{*0}\ell^+\ell^-$, $B^+ \to K^+\ell^+\ell^-$

R(K) and R(K*) – testing lepton universality

In the SM couplings of gauge bosons to leptons are independent of lepton flavour

 \rightarrow Branching fractions differ only by phase space and helicity-suppressed contributions

► Ratios of the form:

$$egin{aligned} R_{\mathcal{K}^{(*)}} &:= rac{\mathcal{B}(B o \mathcal{K}^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B o \mathcal{K}^{(*)} e^+ e^-)} \stackrel{ ext{SM}}{\cong} 1 \end{aligned}$$

- ► In SM free from QCD uncertainties affecting other observables $\rightarrow O(10^{-4})$ uncertainty [JHEP07(2007)040]
- ▶ Up to $\mathcal{O}(1\%)$ QED corrections [EPJC76(2016)8,440]

\rightarrow Any significant deviation is a smoking gun for New Physics.

LHCb measurement of R_K [LHCb-PAPER-2021-004]

R(K) prospects at Belle II

First Belle II measurement of $B^+ \rightarrow K^+ l^+ l^-$

- Signal yield extracted with 2D ML
 - fit to M_{bc} and ΔE : $8.6^{+4.3}_{-3.9}(stat) \pm 0.4(syst)$
- Significance: 2.7 sigma
- \triangleright Peaking background from $B^+ \to K^+ \pi^+ \pi^-$

Prospects for R(K)

- Measurement is going to be statistically limited for foreseeable future with leading systematics due to lepton ID~0.4%
- In order to confirm LHCb's R(K) anomaly (5 sigma) need at least 20 ab⁻¹

R(K) Belle II vs. LHCb

In comparison to LHCb, 3 different aspects to consider: efficiency, statistics and resolution

	Belle II	LHCb
Signal	K⁺, K₅	K+
Same K e e Statistics	l ab -1	1 fb-1
B->K mu mu Efficiency	30 %	~5 %
B->K e e Efficiency	30 %	<5% Lower due to tracking and trigger
B->K e e Resolution	Better thanks to M _{bc}	Worse because of Brems
High q ² bin	Accessible	Hard

Angular analysis $B \longrightarrow K^* \mu \mu$ $\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\vec{\Omega}} \bigg|_{\Gamma} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \Big]$

CP-averaged rate

 $\frac{9}{2\pi} \left[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K \right] \\ + \frac{1}{4} (1 - F_{\rm L}) \sin^2 \theta_K \cos 2\theta_l \\ - F_{\rm L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_{\rm FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right]$

$$P_5' = S_5 / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

Angular analysis of $B \to K^* \mu^+ \mu^-$

► Orthogonal experimental systematics and more precise theory predictions Left: $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ [PRL125011802(2020)], Right: $B^{+} \rightarrow K^{*+}\mu^{+}\mu^{-}$ [arXiv:2012.13241]

 \blacktriangleright Combination of all angular observables suggests $\sim 3\sigma$ tension with SM predictions in each channel

Belle II prospects for the angular analysis

- LHCb sees the largest tension in the muon channel (e channel is SM-like)
- At 2.8/ab the Belle II uncertainty in P'5 (both e & mu) will be comparable to LHCb 3/fb (mu only)

CKM angles

Probing the CKM unitarity triangle

Time-dependent CPV in $B \rightarrow J/\psi K_s$

$$A_{CP}^{raw} = \frac{\Gamma(\bar{B}_{t=0}^0 \to J/\Psi K_S) - \Gamma(B_{t=0}^0 \to J/\Psi K_S)}{\Gamma(\bar{B}_{t=0}^0 \to J/\Psi K_S) + \Gamma(B_{t=0}^0 \to J/\Psi K_S)} = sin(\Delta m_d \Delta t) sin(2\phi_1)$$

- Three "ingredients"
 - Reconstructed decay
 - Time measurement Δt
 - Flavour tag
- Challenge
 - Reduced boost of SuperKEKB leads to Δz 200 $\mu m \rightarrow$ 130 μm

ICHEP 2020: 35 fb⁻¹

First Belle II sin $2\phi_1$ measurement

First measurement of $B \rightarrow J/\psi K_{I}$

Moriond 2021:63 fb⁻¹

BELLE2-CONF-PH-2021-009

The event yield of (7.3±0.4)/fb⁻¹, consistent with Belle

Rediscovery of $B\to \eta' K$

BELLE2-CONF-PH-2021-009 arXiv:2104.06224 [hep-ex]

 $B^{\pm} \rightarrow \eta' K^{\pm}$ with $\eta' \rightarrow \eta \pi^{+} \pi^{-}$

Mode	B(10 ⁻⁶)
$B^{\pm} o \eta^{'} (o \eta (o \gamma \gamma) \pi^{+} \pi^{-}) K^{\pm}$	${f 63.9}^{+4.6}_{-4.4}\pm 4.0$
${\sf B}^{\pm} o \eta^{'} (o \eta (o \pi^{+}\pi^{-})\gamma) K^{\pm}$	$62.9^{+4.8}_{-4.8}\pm5.5$
$ \overline{ \mathbf{B}^{0} \rightarrow \eta^{'} (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^{+} \pi^{-}) K_{S}^{0} } $	$61.6^{+8.6}_{-8.0}\pm3.9$
${\bf B}^{0} \rightarrow \eta^{'} (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^{+} \pi^{-}) K^{0}_{S}$	$58.5^{+7.9}_{-7.4} \pm 4.4$

- Penguin-dominated mode
- Time-dependent CPV is expected to be sensitive to NP in the penguin loop

Towards α/ϕ_1

 $B^0 \rightarrow \pi^+ \pi^-$

 $R^+ \rightarrow \pi^+ \pi^0$

 $A_{CP}(B^+ \to \pi^+ \pi^0) = -0.04 \pm 0.17(\text{stat}) \pm 0.06(\text{syst})$

 $\mathscr{B}(B^0 \to \pi^+\pi^-) = [5.8 \pm 0.7(\text{stat}) \pm 0.3(\text{syst})] \times 1$

BELLE2-CONF-PH-2021-007

BELLE2-CONF-PH-2021-006 arXiv:2105.04111 [hep-ex] Moriond 2021:63 fb⁻¹

$$B^0 \to \pi^0 \pi^0$$

First reconstruction in Belle II data!

 $N(B^0 \rightarrow \pi^0 \pi^0): 14 +6.8 -5.6$

 $\mathscr{B}(B^0 \to \pi^0 \pi^0) = [1.09^{+0.50}_{-0.41}(\text{stat}) \pm 0.27(\text{syst})] \times 10^{-6}$

BELLE2-CONF-PH-2021-010

 $N = 104 \pm 16$

 $\mathscr{B} = [20.6 \pm 3.2(\text{stat}) \pm 4.0(\text{syst})] \times 10^{-6}$

BELLE2-CONF-PH-2021-003

Summary

- The SuperKEKB machine and the Belle II detector have successfully started data taking in 2019
 - Peak luminosity: 2.957 x 10³⁴/cm2/s, Integrated: 162.27/fb (May 24, 2021)
 - Operation continues despite the COVID-19 pandemic
- Early Belle II physics
 - While the first publications are dominated by dark matter physics, competitive B physics results start to emerge
 - 90% C.L. upper limit on $B^+ \rightarrow K^+ \nu \overline{\nu}$ at 4.1 x 10⁻⁵ (submitted to PRL)
 - Belle II can also confirm the LHCb anomalies in R(K) and P' $_5$ but more integrated luminosity will be needed
 - Preparing for another round of tests of CKM unitarity
- Stay tuned
 - When reaching the Belle I luminosity by about summer 2022 Belle II will be even more competitive in the field of B, charm and tau physics

backup

Tagging techniques for Y(4S) events

- Tagging provides:
 - Background suppression
 - Information on B_{sig} (4-momentum)

PURITYEFFICIENCYUntagged•No requirement on B_{tag} •High efficiency,
low purity•Efficiency ~O(0.2%)•High efficiency,
low purity